【题目】下列命题错误的是( )
A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”
B.若p∧q为假命题,则p,q均为假命题
C.对命题P:存在x∈R,使得x2+x+1<0,则¬p为:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要条件
【答案】B
【解析】解:命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,正确,满足命题与逆否命题的关系;
若p∧q为假命题,则p,q均为假命题,由复合命题的真假判断可知p∧q中,p、q一假即假;
对命题P:存在x∈R,使得x2+x+1<0,则¬p为:任意x∈R,均有x2+x+1≥0;满足特称命题与全称命题的否定关系,正确;
“x>2”可以说明“x2﹣3x+2>0”,反之不成立,所以是充分不必要条件正确;
故选B.
【考点精析】根据题目的已知条件,利用特称命题的相关知识可以得到问题的答案,需要掌握特称命题:,,它的否定:,;特称命题的否定是全称命题.
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=x2+2ax+3在(﹣∞,1]上是减函数,当x∈[a+1,1]时,f(x)的最大值与最小值之差为g(a),则g(a)的最小值为( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C: (a>b>0)的离心率为,且过点(1,).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,则下列关于函数f(x)的说法正确的是( )
A.为奇函数且在R上为增函数
B.为偶函数且在R上为增函数
C.为奇函数且在R上为减函数
D.为偶函数且在R上为减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定点的距离比到定直线的距离小1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段, 的中点分别为,求证:直线恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ= .
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)若f(k3x)+f(3x﹣9x﹣4)<0对任意x∈R恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )
A.2800元
B.3000元
C.3800元
D.3818元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com