精英家教网 > 高中数学 > 题目详情
(2012•蓝山县模拟)设椭圆C的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0
.则椭圆C的离心率为
1
2
1
2
分析:先确定Q的坐标,利用AQ⊥AF2,可得
AQ
AF2
=0,即可求得椭圆的离心率.
解答:解:设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),则A(0,b),F1(-c,0),F2(c,0)
∵2
F1F2
+
F2Q
=
0
,∴Q(-3c,0)
AQ
=(-3c,-b),
AF2
=(c,-b)
∵AQ⊥AF2,∴
AQ
AF2
=-3c2+b2=0,
∴b2=3c2,∴a2-c2=3c2
∴a=2c,∴e=
c
a
=
1
2

故答案为:
1
2
点评:本题考查椭圆的性质,考查向量知识的运用,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)已知m是一个给定的正整数,如果两个整数a,b被m除得的余数相同,则称a与b对模m同余,记作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),则r可以为(  )

查看答案和解析>>

同步练习册答案