精英家教网 > 高中数学 > 题目详情
已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足:
AP
BP
=k|
PC
|2
(k∈R).
(1)求动点P的轨迹方程,并说明方程表示的图形;
(2)当k=2时,求|
AP
+
BP
|
的最大值和最小值.
分析:(1)根据题意,设出P的坐标(x,y),可得向量的坐标,代入
AP
BP
=k|
PC
|2
|中,可得(k-1)x2+(k-1)y2-2kx+k+1=0,分k=1与k≠1两种情况讨论,可得答案;
(2)表示出向量和的模,利用圆的参数方程设点的坐标,即可求得|
AP
+
BP
|
的最大值和最小值.
解答:解:( 1 )  设动点P的坐标为(x,y),则
AP
=(x,y-1),
BP
=(x,y+1)
PC
=(1-x,-y)

AP
BP
=k|
PC
|2
,∴x2+y2-1=k[(x-1)2+y2],即(k-1)x2+(k-1)y2-2kx+k+1=0 
若k=1,则方程为x=1,表示过点(1,0)且平行于y轴的直线;
若k≠1,则方程为(x+
k
1-k
2+y2=(
1
1-k
2,表示以(
k
1-k
,0)为圆心,以
1
|1-k|
为半径的圆;
( 2 ) 当k=2时,方程化为(x-2)2+y2=1,|
AP
+
BP
|
=|(2x,2y)|=2
x2+y2

令x=2+cosθ,y=sinθ,则|
AP
+
BP
|
=2
5+4cosθ

∴当cosθ=1时,|
AP
+
BP
|
的最大值为6,当cosθ=-1时,|
AP
+
BP
|
的最小值为2.
点评:本题考查直线与圆的方程的综合运用,考查向量知识的运用,考查圆的参数方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点A(0,1),点B在直线x+y=0上运动,当线段AB最短时,点B的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定点A(0,-1),点B在圆F:x2+(y-1)2=16上运动,F为圆心,线段AB的垂直平分线交BF于P.
(I)求动点P的轨迹E的方程;若曲线Q:x2-2ax+y2+a2=1被轨迹E包围着,求实数a的最小值.
(II)已知M(-2,0)、N(2,0),动点G在圆F内,且满足|MG|•|NG|=|OG|2,求
MG
NG
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(0,1),B(0,-1),C(1,0),动点P满足:
AP
BP
=k|
PC
|2
(1)求动点P的轨迹方程,并说明方程表示的曲线类型;
(2)当k=2,求|2
AP
+
BP
|的最大,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知定点A(0,-1),点M(x,y)在曲线y=x2(0<x<3)上运动,过点M作垂直于x轴的直线l,l交直线y=9于点N.
(1)求△AMN面积f (x);
(2)求f (x)的最大值及此时点M的坐标.

查看答案和解析>>

同步练习册答案