ÒÔOΪԭµã£¬
OF
ËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£®Éè
OF
FG
=1
£¬µãFµÄ×ø±êΪ£¨t£¬0£©£¬t¡Ê[3£¬+¡Þ£©£®µãGµÄ×ø±êΪ£¨x0£¬y0£©£®
£¨1£©Çóx0¹ØÓÚtµÄº¯Êýx0=f£¨t£©µÄ±í´ïʽ£¬²¢ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®
£¨2£©Éè¡÷OFGµÄÃæ»ýS=
31
6
t
£¬ÈôOÒÔΪÖÐÐÄ£¬F£¬Îª½¹µãµÄÍÖÔ²¾­¹ýµãG£¬Çóµ±|
OG
|
È¡×îСֵʱÍÖÔ²µÄ·½³Ì£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôµãPµÄ×ø±êΪ(0£¬
9
2
)
£¬C£¬DÊÇÍÖÔ²ÉϵÄÁ½µã£¬
PC
=¦Ë
PD
(¦Ë¡Ù1)
£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
£¨1£©ÓÉÌâÒâµÃ£º
OF
=£¨t£¬0£©£¬
OG
=£¨x0£¬y0£©£¬
FG
¨T£¨x0-t£¬y0£©£¬
Ôò£º
OF
FG
=t(x0-t)=1
£¬½âµÃ£ºx0=f(t)=t+
1
t

ËùÒÔf£¨t£©ÔÚt¡Ê[3£¬+¡Þ£©Éϵ¥µ÷µÝÔö£®
£¨2£©ÓÉS=
1
2
|
OF
|•|y0|=
1
2
|y0|•t=
31
6
t
µÃy0=¡À
31
3
£¬
µãGµÄ×ø±êΪ£¨t+
1
t
£¬¡À
31
3
£©£¬|
OG
|
2
=(t+
1
t
)
2
+
31
9

µ±t=3ʱ£¬|
OG
|È¡µÃ×îСֵ£¬´ËʱµãF£¬GµÄ×ø±êΪ£¨3£¬0£©¡¢£¨
10
3
£¬¡À
31
3
£©
ÓÉÌâÒâÉèÍÖÔ²µÄ·½³ÌΪ
100
9(b2+9)
+
31
9b2
=1
£¬ÓÖµãGÔÚÍÖÔ²ÉÏ£¬
½âµÃb2=9»òb2=-
31
9
£¨Éᣩ¹ÊËùÇóµÄÍÖÔ²·½³ÌΪ
x2
18
+
y2
9
=1

£¨3£©ÉèC£¬DµÄ×ø±ê·Ö±ðΪ£¨x£¬y£©¡¢£¨m£¬n£©
Ôò
PC
=£¨x£¬y-
9
2
£©£¬
PD
=£¨m£¬n-
9
2
£©ÓÉ
PC
=¦Ë
PD
µÃ£¨x£¬y-
9
2
£©=¦Ë=£¨m£¬n-
9
2
£©£¬
¡àx=¦Ëm£¬y=¦Ën-
9
2
¦Ë+
9
2

ÓÖµãC£¬DÔÚÍÖÔ²ÉÏ
x2
18
+
y2
9
=1 
¦Ë2m2
18
+
(¦Ën-
9
2
¦Ë+
9
2
)
2
9
=1
ÏûÈ¥mµÃn=
13¦Ë-5
4¦Ë
   
|n|¡Ü3£¬¡à|
13¦Ë-5
4¦Ë
|¡Ü3½âµÃ
1
5
¡Ü¦Ë¡Ü5

Ó֡ߦˡÙ1
¡àʵÊý¦ËµÄ·¶Î§ÊÇ[
1
5
£¬1£©¡È£¨1£¬5]
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÔOΪԭµã£¬
OF
ËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£®Éè
OF
FG
=1
£¬µãFµÄ×ø±êΪ£¨t£¬0£©£¬t¡Ê[3£¬+¡Þ£©£®µãGµÄ×ø±êΪ£¨x0£¬y0£©£®
£¨1£©Çóx0¹ØÓÚtµÄº¯Êýx0=f£¨t£©µÄ±í´ïʽ£¬²¢ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®
£¨2£©Éè¡÷OFGµÄÃæ»ýS=
31
6
t
£¬ÈôOÒÔΪÖÐÐÄ£¬F£¬Îª½¹µãµÄÍÖÔ²¾­¹ýµãG£¬Çóµ±|
OG
|
È¡×îСֵʱÍÖÔ²µÄ·½³Ì£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôµãPµÄ×ø±êΪ(0£¬
9
2
)
£¬C£¬DÊÇÍÖÔ²ÉϵÄÁ½µã£¬
PC
=¦Ë
PD
(¦Ë¡Ù1)
£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸