精英家教网 > 高中数学 > 题目详情
已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=m[g(x+1)-1]-lnx,其中m为常数且m≠0.
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由.
分析:(1)用待定系数法设g(x)=ax2+bx+c,再据题设条件建立方程求参数,c=0易求,求a,b要求正确理解g(x+1)=g(x)+2x+1恒成立这一特性,即理解函数相等的意义,通过函数相等转化出关于a,b的方程求值.
(2)解出函数f(x)的表达式及其定义域,再求导,依据参数m的取值范围来判断导数的符号,确定函数f(x)在定义域上的单调性,解答本题时要注意答题格式.
解答:解:(1)设g(x)=ax2+bx+c,g(x)的图象经过坐标原点,所以c=0.
∵g(x+1)=g(x)+2x+1∴a(x+1)2+b(x+1)=ax2+bx+2x+1
即:ax2+(2a+b)x+a+b=ax2+(b+2)x+1
∴a=1,b=0,g(x)=x2;(6分)
(2)当-2<m<0时,判断函数f(x)在其定义域上单调递减,证明如下:
∵函数f(x)=mx2+2mx-lnx的定义域为(0,+∞),
f(x)=2mx+2m-
1
x
=
2mx2+2mx-1
x

令k(x)=2mx2+2mx-1,k(x)=2m(x+
1
2
)2-
m
2
-1

∵-2<m<0,∴k(x)=2mx2+2mx-1<0在(0,+∞)上恒成立,
即f′(x)<0在(0,+∞)上恒成立.
∴当-2<m<0时,函数f(x)在定义域(0,+∞)上单调递减.(13分)
点评:考查函数相等,求定义域的方法,用导数数判断函数的单调性,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
(1)求g(x)的表达式;
(2)设1<m≤e,H(x)=g(x+
1
2
)+mlnx-(m+1)x+
9
8
,求证:H(x)在[1,m]上为减函数;
(3)在(2)的条件下,证明:对任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0)

(1)求g(x)的表达式;
(2)若?x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由;
(3)证明:对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)对任意实数x不等式x-1≤g(x)≤x2-x恒成立,且g(-1)=0,令f(x)=g(x)+mlnx+
12
(m∈R)

(I)求g(x)的表达式;
(Ⅱ)若?x>0使f(x)≤0成立,求实数m的取值范围;
(Ⅲ)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

同步练习册答案