精英家教网 > 高中数学 > 题目详情
已知椭圆C的焦点是F1(-
3
,0)
F2(
3
,0)
,点F1到相应的准线的距离为
3
3
,过点F2且倾斜角为锐角的直线?与椭圆C交于A、B两点,使|F2B|=3F2A|.
(1)求椭圆C的方程;
(2)求直线?的方程.
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1 (a>b>0)

则由已知得:c=
3
, 
b2
c
=
3
3

∴b2=1,a2=b2+c2=4
x2
4
+y2=1
为所求.
(2)由椭圆方程知:e=
3
2
,设A(x1,y1),B(x2,y2
|AF2|=a-ex1=2-
3
2
x1

|BF2|=a-ex2=2-
3
2
x2

由3|AF2|=|BF2|
3(2-
3
2
x1)=2-
3
2
x2

3x1-x2=
8
3
3
    ①
又F2
.
BA
所成的比λ=3
3
=
x2+3x1
1+3
,即3x1+x2=4
3
   ②
由①,②得:x1=
10
9
3
x2=
2
3
3

B(
2
3
3
,-
6
3
)

?:y=
6
3
3
-
2
3
3
(x-
3
)

2
x-y-
6
=0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于
2
5
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程是
x2
a2
+
y2
b2
=1
(a>b>0),斜率为1的直线l与椭圆C交于A(x1,y1),B(x2,y2)两点.
(Ⅰ)若椭圆的离心率e=
3
2
,直线l过点M(b,0),且
OA
OB
=
32
5
cot∠AOB
,求椭圆的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP
=λ(
OA
+
OB
)
(λ>0),若点P在椭圆C上,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C的方程是
x2
a2
+
y2
b2
=1
(a>b>0),点A,B分别是椭圆的长轴的左、右端点,
左焦点坐标为(-4,0),且过点P 
3
2
  
5
2
3
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,试问:过P点能否引圆M的切线,若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形的面积;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•通州区一模)已知椭圆C的焦点在y轴上,离心率为
2
2
,且短轴的一个端点到下焦点F的距离是
2

(I)求椭圆C的标准方程;
(II)设直线y=-2与y轴交于点P,过点F的直线l交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市浠水一中高三(下)高考交流数学试卷(理科)(解析版) 题型:解答题

已知椭圆C的方程是(a>b>0),点A,B分别是椭圆的长轴的左、右端点,
左焦点坐标为(-4,0),且过点
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,试问:过P点能否引圆M的切线,若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形的面积;若不能,说明理由.

查看答案和解析>>

同步练习册答案