精英家教网 > 高中数学 > 题目详情
11.以下四个命题:
①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②两个随机变量相关性越强,则相关系数的绝对值越接近于1.
③在回归直线$\stackrel{∧}{y}$=0.2x+12中,当解释变量x每增加一个单位时,预报变量$\stackrel{∧}{y}$平均增加0.2单位.
④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是②③.

分析 根据抽样方法的定义,可判断①;根据相关系数与相关性的关系,可判断②;根据相关系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.

解答 解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;
两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②正确;
在回归直线$\stackrel{∧}{y}$=0.2x+12中,当解释变量x每增加一个单位时,预报变量$\stackrel{∧}{y}$平均增加0.2单位,故③正确;
对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④错误;
故正确的命题是:②③,
故答案为:②③

点评 本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(sin$\frac{x}{6}$,cos$\frac{x}{6}$),$\overrightarrow b$=(cos$\frac{x}{3}$,sin$\frac{x}{3}$)且f(x)=$\overrightarrow a$•$\overrightarrow b$
(1)求f(x)的周期;
(2)求f(x)最大值和此时相应的x的值;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的$\frac{1}{7}$是较小的两份之和,问最小一份为(  )
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{5}{6}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆柱的侧面积为3π,底面周长为2π,则它的体积为$\frac{3}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义一种运算如下:$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$=ad-bc,则复数$[\begin{array}{l}{1-i}&{-1}\\{2}&{3i}\end{array}]$的共轭复数是5-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求和:${C}_{n}^{0}$${C}_{n}^{1}$+${C}_{n}^{1}$${C}_{n}^{2}$+…+${C}_{n}^{n-1}$${C}_{n}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示的程序框图,若输出结果是990,则判断框内应填入的条件是(  )
A.i≥10B.i<10C.i≥9D.i<9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面上三点A、B、C满足|AB|=3,|BC|=4,|CA|=5,则$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}$+$\overrightarrow{CA}•\overrightarrow{AB}$值等于(  )
A.-25B.-20C.25D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|$\frac{x-1}{x+2}$≥0},B={x|x≤a},若A∩B=B,则a的取值范围是(  )
A.a≥1B.a≥2C.a≤-2D.a<-2

查看答案和解析>>

同步练习册答案