精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>b>0)的焦点为F1、F2,弦AB过F1且在双曲线的一支上,若|AF2|+|BF2|=2|AB|,则|AB|为
4a
4a
分析:根据双曲线的定义,得双曲线左支上点A满足|AF2|-|AF1|=2a,点B满足|BF2|-|BF1|=2a,两式相加再结合已知条件,整理即得AB的长.
解答:解:∵双曲线
x2
a2
-
y2
b2
=1(a>b>0)的焦点为F1、F2
∴左支上点A满足|AF2|-|AF1|=2a,点B满足|BF2|-|BF1|=2a
相加,得(|AF2|+|BF2|)-(|AF1|+|BF1|)=4a,
又∵|AF2|+|BF2|=2|AB|,且弦AB过F1且在双曲线的一支上,|AF1|+|BF1|=|AB|,
∴|AB|=4a
故答案为:4a
点评:本题给出双曲线经过左焦点的弦AB,且A、B到右焦点的距离之和为AB的2倍,求AB的长度,着重考查了双曲线的定义与基本性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案