10£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=2015£¬ÊýÁÐ{an}ǰnÏîºÍ¼ÇΪSn£¬Ç°nÏî»ý¼ÇΪTn£®
£¨1£©Èô${S_3}=\frac{6045}{4}$£¬ÇóµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÅжÏ|Tn|Óë|Tn+1|µÄ´óС£»²¢ÇónΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷£ºÈôÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬Ôò×Ü¿ÉÒÔʹÆä
³ÉµÈ²îÊýÁУ»ÈôËùÓÐÕâЩµÈ²îÊýÁеĹ«²î°´´ÓСµ½´óµÄ˳ÐòÒÀ´Î¼ÇΪd1£¬d2£¬¡­£¬dn£¬ÔòÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®

·ÖÎö £¨1£©ÔËÓõȱÈÊýÁеÄͨÏʽ£¬½â·½³Ì¿ÉµÃ¹«±Èq£»
£¨2£©Çó³ö|Tn+1|Óë|Tn|µÄÉÌ£¬ÌÖÂÛµ±n¡Ü10ʱ£¬µ±n¡Ý11ʱ£¬¿Î±È½Ï´óС£»ÓÉT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬¼´¿ÉµÃµ½nΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£»
£¨3£©ÓɵȱÈÊýÁÐ{an}µÄͨÏʽ£¬ÌÖÂÛ¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬¼ÆË㻯¼ò¼´¿ÉµÃµ½ËüÃdzɵȲîÊýÁУ¬ÇóµÃ¹«²î£¬ÔÙÓɵȱÈÊýÁе͍Ò壬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©µÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=2015£¬¹«±ÈΪq£¬
ÓÐ${S_3}=2015£¨1+q+{q^2}£©=\frac{6045}{4}$£¬¼´${q^2}+q+\frac{1}{4}=0$£¬½âµÃ$q=-\frac{1}{2}$£»
£¨2£©¡ß$\frac{{|{{T_{n+1}}}|}}{{|{T_n}|}}=\frac{{|{{a_1}•{a_2}¡­{a_n}•{a_{n+1}}}|}}{{|{{a_1}•{a_2}¡­{a_n}}|}}=|{{a_{n+1}}}|=\frac{2015}{2^n}$£®
ÓÖ¡ß$\frac{2015}{{{2^{11}}}}£¼1£¼\frac{2015}{{{2^{10}}}}$£¬¡àµ±n¡Ü10ʱ£¬|Tn+1|£¾|Tn|£»
µ±n¡Ý11ʱ£¬|Tn+1|£¼|Tn|£®¡àµ±n=11ʱ£¬|Tn|È¡µÃ×î´óÖµ£¬
ÓÖ¡ßT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬¡àTnµÄ×î´óÖµÊÇT9ºÍT12ÖеĽϴóÕߣ¬
ÓÖ¡ß$\frac{{{T_{12}}}}{T_9}={a_{10}}•{a_{11}}•{a_{12}}={[{2015•{{£¨{-\frac{1}{2}}£©}^{10}}}]^3}£¾1$£¬¡àT12£¾T9£®
Òò´Ëµ±n=12ʱ£¬Tn×î´ó£®
£¨3£©Ö¤Ã÷£º¡ß${a_n}=2015•{£¨{-\frac{1}{2}}£©^{n-1}}$£¬¡à|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º£¬
¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬
Ôò${a_{k+1}}+{a_k}={a_1}{£¨{-\frac{1}{2}}£©^k}+{a_1}{£¨{-\frac{1}{2}}£©^{k-1}}=\frac{a_1}{2^k}$£¬$2{a_{k+2}}=2{a_1}{£¨{-\frac{1}{2}}£©^{k+1}}=\frac{a_1}{2^k}$£¬
¡àak+1+ak=2ak+2£¬Òò´Ëak+1£¬ak+2£¬ak³ÉµÈ²îÊýÁУ¬
¹«²î${d_k}={a_{k+2}}-{a_{k+1}}={a_1}[{{{£¨{-\frac{1}{2}}£©}^{k+1}}-{{£¨{-\frac{1}{2}}£©}^k}}]=\frac{{3{a_1}}}{{{2^{k+1}}}}$£»
¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬
Ôò${a_{k+1}}+{a_k}={a_1}{£¨{-\frac{1}{2}}£©^k}+{a_1}{£¨{-\frac{1}{2}}£©^{k-1}}=-\frac{a_1}{2^k}$£¬$2{a_{k+2}}=2{a_1}{£¨{-\frac{1}{2}}£©^{k+1}}=-\frac{a_1}{2^k}$£®
¡àak+1+ak=2ak+2£¬Òò´Ëak£¬ak+2£¬ak+1³ÉµÈ²îÊýÁУ¬
¹«²î${d_k}={a_{k+2}}-{a_k}={a_1}[{{{£¨{-\frac{1}{2}}£©}^{k+1}}-{{£¨{-\frac{1}{2}}£©}^{k-1}}}]=\frac{{3{a_1}}}{{{2^{k+1}}}}$£¬
×ÛÉÏ¿ÉÖª£¬{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬
ÇÒ${d_k}=\frac{{3{a_1}}}{{{2^{k+1}}}}$£¬¡ß$\frac{{{d_{n-1}}}}{d_n}=2$£¬¡àÊýÁÐ{dn}ΪÊ×ÏîΪ$\frac{3}{4}$a1£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ®

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁе͍ÒåºÍͨÏʽµÄÔËÓã¬ÒÔ¼°µÈ²îÊýÁеÄÖÐÏ¿¼²éÊýÁеĵ¥µ÷ÐÔµÄÔËÓã¬ÒÔ¼°·ÖÀàÌÖÂÛ˼ÏëºÍÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚ¡÷ABCÖУ¬sinA=$\frac{4}{5}$£¬$\overrightarrow{AB}•\overrightarrow{AC}$=6£¬Ôò¡÷ABCµÄÃæ»ýΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐÈçÏ£º
X-101
Pabc
ÆäÖÐa£¬b£¬c£¬³ÉµÈ²îÊýÁУ¬ÈôE£¨X£©=$\frac{1}{3}$£¬ÔòD£¨X£©µÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{5}{9}$B£®$\frac{5}{8}$C£®$\frac{3}{8}$D£®$\frac{7}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±Ïßl1¾­¹ýµãA£¨m£¬1£©£¬B£¨-1£¬m£©£¬Ö±Ïßl2¾­¹ýµãP£¨1£¬2£©£¬Q£¨-5£¬0£©£®
£¨1£©Èôl1¡Îl2£¬ÇómµÄÖµ£»
£¨2£©Èôl1¡Íl2£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èô$\left\{\begin{array}{l}{y¡Ü2}\\{y¡Ýx}\\{y¡Üa£¨x-1£©}\end{array}\right.$£¬ÇÒz=x+yµÄ×î´óÖµÊÇ2£¬Ôòa=£¨¡¡¡¡£©
A£®1B£®2C£®-1D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¦Á£¬¦Â¾ùΪÈñ½Ç£¬ÇÒ$sin¦Á=\frac{1}{2}sin£¨{¦Á+¦Â}£©$£¬Ôò¦Á£¬¦ÂµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®¦Á£¼¦ÂB£®¦Á£¾¦ÂC£®¦Á=¦ÂD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ò»´Î²Â½±ÓÎÏ·ÖУ¬1£¬2£¬3£¬4ËÄÉÈÃÅÀï°Ú·ÅÁËa£¬b£¬c£¬dËļþ½±Æ·£¨Ã¿ÉÈÃÅÀï½ö·ÅÒ»¼þ£©£®¼×ͬѧ˵£º1ºÅÃÅÀïÊÇb£¬3ºÅÃÅÀïÊÇc£»ÒÒͬѧ˵£º2ºÅÃÅÀïÊÇb£¬3ºÅÃÅÀïÊÇd£»±ûͬѧ˵£º4ºÅÃÅÀïÊÇb£¬2ºÅÃÅÀïÊÇc£»¶¡Í¬Ñ§Ëµ£º4ºÅÃÅÀïÊÇa£¬3ºÅÃÅÀïÊÇc£®Èç¹ûËûÃÇÿÈ˶¼²Â¶ÔÁËÒ»°ë£¬ÄÇô4ºÅÃÅÀïÊÇ£¨¡¡¡¡£©
A£®aB£®bC£®cD£®d

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôµã$£¨{sin\frac{5¦Ð}{6}£¬cos\frac{5¦Ð}{6}}£©$ÔڽǦÁµÄÖÕ±ßÉÏ£¬Ôòsin¦Á+cos¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{3}}}{2}-\frac{1}{2}$B£®$\frac{{\sqrt{3}}}{2}-\frac{1}{2}$C£®$-\frac{{\sqrt{3}}}{2}+\frac{1}{2}$D£®$\frac{{\sqrt{3}}}{2}+\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®º¯Êý f£¨x£©=Acos£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼$\frac{¦Ð}{2}$£¬x¡ÊR£©£¬Æä²¿·ÖͼÏóÈçͼËùʾ£®
£¨1£©Çóº¯Êýy=f£¨x£©µÄ½âÎöʽ£»
£¨2£©µ±x¡Ê[0£¬¦Ð]ʱ£¬Çóf£¨x£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸