·ÖÎö £¨1£©ÔËÓõȱÈÊýÁеÄͨÏʽ£¬½â·½³Ì¿ÉµÃ¹«±Èq£»
£¨2£©Çó³ö|Tn+1|Óë|Tn|µÄÉÌ£¬ÌÖÂÛµ±n¡Ü10ʱ£¬µ±n¡Ý11ʱ£¬¿Î±È½Ï´óС£»ÓÉT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬¼´¿ÉµÃµ½nΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£»
£¨3£©ÓɵȱÈÊýÁÐ{an}µÄͨÏʽ£¬ÌÖÂÛ¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬¼ÆË㻯¼ò¼´¿ÉµÃµ½ËüÃdzɵȲîÊýÁУ¬ÇóµÃ¹«²î£¬ÔÙÓɵȱÈÊýÁе͍Ò壬¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨1£©µÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=2015£¬¹«±ÈΪq£¬
ÓÐ${S_3}=2015£¨1+q+{q^2}£©=\frac{6045}{4}$£¬¼´${q^2}+q+\frac{1}{4}=0$£¬½âµÃ$q=-\frac{1}{2}$£»
£¨2£©¡ß$\frac{{|{{T_{n+1}}}|}}{{|{T_n}|}}=\frac{{|{{a_1}•{a_2}¡{a_n}•{a_{n+1}}}|}}{{|{{a_1}•{a_2}¡{a_n}}|}}=|{{a_{n+1}}}|=\frac{2015}{2^n}$£®
ÓÖ¡ß$\frac{2015}{{{2^{11}}}}£¼1£¼\frac{2015}{{{2^{10}}}}$£¬¡àµ±n¡Ü10ʱ£¬|Tn+1|£¾|Tn|£»
µ±n¡Ý11ʱ£¬|Tn+1|£¼|Tn|£®¡àµ±n=11ʱ£¬|Tn|È¡µÃ×î´óÖµ£¬
ÓÖ¡ßT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬¡àTnµÄ×î´óÖµÊÇT9ºÍT12ÖеĽϴóÕߣ¬
ÓÖ¡ß$\frac{{{T_{12}}}}{T_9}={a_{10}}•{a_{11}}•{a_{12}}={[{2015•{{£¨{-\frac{1}{2}}£©}^{10}}}]^3}£¾1$£¬¡àT12£¾T9£®
Òò´Ëµ±n=12ʱ£¬Tn×î´ó£®
£¨3£©Ö¤Ã÷£º¡ß${a_n}=2015•{£¨{-\frac{1}{2}}£©^{n-1}}$£¬¡à|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º£¬
¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬
Ôò${a_{k+1}}+{a_k}={a_1}{£¨{-\frac{1}{2}}£©^k}+{a_1}{£¨{-\frac{1}{2}}£©^{k-1}}=\frac{a_1}{2^k}$£¬$2{a_{k+2}}=2{a_1}{£¨{-\frac{1}{2}}£©^{k+1}}=\frac{a_1}{2^k}$£¬
¡àak+1+ak=2ak+2£¬Òò´Ëak+1£¬ak+2£¬ak³ÉµÈ²îÊýÁУ¬
¹«²î${d_k}={a_{k+2}}-{a_{k+1}}={a_1}[{{{£¨{-\frac{1}{2}}£©}^{k+1}}-{{£¨{-\frac{1}{2}}£©}^k}}]=\frac{{3{a_1}}}{{{2^{k+1}}}}$£»
¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬
Ôò${a_{k+1}}+{a_k}={a_1}{£¨{-\frac{1}{2}}£©^k}+{a_1}{£¨{-\frac{1}{2}}£©^{k-1}}=-\frac{a_1}{2^k}$£¬$2{a_{k+2}}=2{a_1}{£¨{-\frac{1}{2}}£©^{k+1}}=-\frac{a_1}{2^k}$£®
¡àak+1+ak=2ak+2£¬Òò´Ëak£¬ak+2£¬ak+1³ÉµÈ²îÊýÁУ¬
¹«²î${d_k}={a_{k+2}}-{a_k}={a_1}[{{{£¨{-\frac{1}{2}}£©}^{k+1}}-{{£¨{-\frac{1}{2}}£©}^{k-1}}}]=\frac{{3{a_1}}}{{{2^{k+1}}}}$£¬
×ÛÉÏ¿ÉÖª£¬{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬
ÇÒ${d_k}=\frac{{3{a_1}}}{{{2^{k+1}}}}$£¬¡ß$\frac{{{d_{n-1}}}}{d_n}=2$£¬¡àÊýÁÐ{dn}ΪÊ×ÏîΪ$\frac{3}{4}$a1£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ®
µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁе͍ÒåºÍͨÏʽµÄÔËÓã¬ÒÔ¼°µÈ²îÊýÁеÄÖÐÏ¿¼²éÊýÁеĵ¥µ÷ÐÔµÄÔËÓã¬ÒÔ¼°·ÖÀàÌÖÂÛ˼ÏëºÍÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| X | -1 | 0 | 1 |
| P | a | b | c |
| A£® | $\frac{5}{9}$ | B£® | $\frac{5}{8}$ | C£® | $\frac{3}{8}$ | D£® | $\frac{7}{9}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | -1 | D£® | -2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¦Á£¼¦Â | B£® | ¦Á£¾¦Â | C£® | ¦Á=¦Â | D£® | ²»È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a | B£® | b | C£® | c | D£® | d |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{{\sqrt{3}}}{2}-\frac{1}{2}$ | B£® | $\frac{{\sqrt{3}}}{2}-\frac{1}{2}$ | C£® | $-\frac{{\sqrt{3}}}{2}+\frac{1}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}+\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com