精英家教网 > 高中数学 > 题目详情

定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时,

f(x)= .

(Ⅰ)求f(x)在[-1, 1]上的解析式;    (Ⅱ)证明f(x)在(0, 1)上时减函数; 

(Ⅲ)当λ取何值时, 方程f(x)=λ在[-1, 1]上有解?

 

【答案】

(1)f(x)=.;(2)见解析;

(3)λ∈(-, -)∪{0}∪(, )时方程f(x)=λ在[-1, 1]上有解.

 

【解析】主要考查函数奇偶性、单调性、周期性、指数运算与指数函数的图象和性质。

解:(Ⅰ)解:当x∈(-1, 0)时, - x∈(0, 1). ∵当x∈(0, 1)时, f(x)= .

∴f(-x)=. 又f(x)是奇函数, ∴f (-x)= - f (x)= .∴f(x)= -.

 ∵f(-0)= -f(0),  ∴f(0)= 0. 又f(x)是最小正周期为2的函数, ∴对任意的x有f(x+2)= f(x).

∴f(-1)= f(-1+2)= f(1). 另一面f(-1)=- f(1), ∴- f(1)= f(1) . ∴f(1) = f(-1)=0.  ∴f(x)在[-1, 1]上的解析式为

 f(x)=.   

(Ⅱ) 对任意的0<x1<x2<1,f(x1)-f(x2)=-=== >0,因此f(x)在(0, 1)上时减函数; 

 (Ⅲ)在[-1, 1]上使方程f(x)=λ有解的λ的取值范围就是函数f(x)在[-1, 1]上的值域. 当x∈(-1, 0)时, 2<2x+<, 即2<<. ∴< f(x)= <. 又f(x)是奇函数, ∴f(x)在(-1, 0)上也是减函数, ∴当x∈(-1, 0)时有-< f(x)= -< -. ∴f(x)在[-1, 1]上的值域是(-, -)∪{0}∪(, ). 故当

λ∈(-, -)∪{0}∪(, )时方程f(x)=λ在[-1, 1]上有解.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案