精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
设函数.
(1)对于任意实数恒成立(其中表示的导函数),求的最大值;
(2)若方程上有且仅有一个实根,求的取值范围.
(1) (2).

试题分析:解:(1),.
法一:恒成立恒成立.…………………3分
的最小值为
所以,得,即的最大值为. …………………………………………………6分
法二:令.
要使恒成立,则只需恒成立.
由于的对称轴为,当时,
解得,所以的最大值为.……………………………………………………6分
(2)因为当时, ;当时, ;当时,
单增,在单减.
所以.………………………………9分
故当时,方程仅有一个实根.
时,方程仅有一个实根.
所以.………………………………………………………………12分
点评:根据导数不等式恒成立,来分析函数的最值来得到结论,同时对于方程根的问题,转化为图像与坐标轴的交点情况来说明即可,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知是函数的一个极值点. 
(Ⅰ)求的值;
(Ⅱ)当时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在上的奇函数,且当时,不等式成立,若,则的大小关系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义方程f= f的实数根叫做函数的“新驻点”,若函数g=x,
h=ln(x+1),=的“新驻点”分别为,则的大小关系为 (  )
A.>>B.> >C.>>D.>>

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为
(Ⅰ)试确定b、c的值;
(Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.
(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(   )
A.B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)函数
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案