精英家教网 > 高中数学 > 题目详情
设p:
2x-1
≤1
,q:(x-a)[x-(a+1)]≤0,若¬q是¬p的充分不必要条件,求实数a的取值范围.
分析:先求出命题p,q的等价条件,将¬q是¬p的充分不必要条件,转化为p是q的充分不必要条件,然后建立不等式条件,即可求实数a的取值范围.
解答:解:由
2x-1
≤1
,平方得0≤2x-1≤1,
解得
1
2
≤x≤1
,即p:
1
2
≤x≤1

由(x-a)[x-(a+1)]≤0,
得a≤x≤a+1,即q:a≤x≤a+1,
若¬q是¬p的充分不必要条件,
即p是q的充分不必要条件,
则p⇒q,但q⇒p不成立.
a≤
1
2
a+1≥1
,即
a≤
1
2
a≥0
,解得:0≤a≤
1
2

综上:0≤a≤
1
2
点评:本题主要考查充分条件和必要条件的应用,利用逆否命题的等价性将¬q是¬p的充分不必要条件,转化为p是q的充分不必要条件,然后利用数轴解决问题,注意区间端点值的等号取舍问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P={x|2x>1},Q={x|log2x>1},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:
2x-1
≤1,q:(x-a)[x-(a+1)]≤0,若q是p的必要而不充分条件,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:|2x+1|>a.q:
x-1
2x-1
>0
.使得p是q的必要但不充分条件的实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设p:
2x-1
≤1,q:(x-a)[x-(a+1)]≤0,若q是p的必要而不充分条件,则实数a的取值范围是(  )
A.[0,
1
2
]
B.(0,
1
2
C.(-∞,0]∪[
1
2
,+∞)
D.(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

同步练习册答案