已知点P(1,-2)及其关于原点的对称点中有且只有一个在不等式2x-by+1>0表示的平面区域内,则b的取值范围是 .
【答案】
分析:先求出点P关于原点的对称点,然后把两点的坐标代入不等式左侧,使带入后的两代数式的乘积小于0.
解答:解:设点P(1,-2)关于原点的对称点为Q(x,y),则

,解得:Q(-1,2).
因为点P(1,-2)及其关于原点的对称点中有且只有一个在不等式2x-by+1>0表示的平面区域内,
所以把点P,Q的坐标代入代数式2x-by+1中乘积小于0,即[2×1-b×(-2)+1][2×(-1)-b×2+1]<0,
解得:

或

,所以b的取值范围是(-∞,

)∪(

,+∞).
故答案为(-∞,

)∪(

,+∞).
点评:本题考查了二元一次不等式表示的平面区域,与二元一次不等式对应的直线把平面分成三个部分,直线两侧的点的坐标代入直线方程左侧的代数式后得到的值异号.