4£®Éè$\overrightarrow{a}$=£¨$\sqrt{2}$£¬m£©£¨m£¾0£©£¬$\overrightarrow{b}$=£¨sinx£¬cosx£©ÇÒº¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$µÄ×î´óֵΪ2£®
£¨1£©ÇómÓ뺯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©¡÷ABCÖУ¬f£¨A-$\frac{¦Ð}{4}$£©+f£¨B-$\frac{¦Ð}{4}$£©=12$\sqrt{2}$sinAsinB£¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒC=$\frac{¦Ð}{3}$£¬c=$\sqrt{6}$£¬Çó¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨1£©¸ù¾Ýº¯Êý$f£¨x£©=\vec a•\vec b$µÄ×î´óֵΪ2£¬ÇómÓ뺯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©ÀûÓÃ$f£¨{{A}-\frac{¦Ð}{4}}£©+f£¨{{B}-\frac{¦Ð}{4}}£©=12\sqrt{2}sin{A}sin{B}$£¬½áºÏÕýÏÒ¶¨Àí£¬¿ÉµÃa+b=3ab£®½áºÏÓàÏÒ¶¨Àíc2=a2+b2-2abcosC£¬±äÐεÃc2=£¨a+b£©2-2ab-2abcosC¼´3a2b2-ab-2=0£¬Çó³öab£¬¼´¿ÉÇó¡÷ABCµÄÃæ»ý£®

½â´ð ½â£º£¨1£©$f£¨x£©=\sqrt{2}sinx+mcosx=\sqrt{{m^2}+2}sin£¨{x+¦Õ}£©$$£¨{tan¦Õ=\frac{{\sqrt{2}m}}{2}}£©$¡­£¨4·Ö£©
Öª${[{f£¨x£©}]_{max}}=\sqrt{{m^2}+2}$£¬Áî$\sqrt{{m^2}+2}=2$£¬µÃ$m=\sqrt{2}$.$T=\frac{2¦Ð}{1}=2¦Ð$¡­£¨6·Ö£©
£¨2£©ÓÉ£¨1£©Öª$m=\sqrt{2}$ʱ£¬$f£¨x£©=2sin£¨{x+\frac{¦Ð}{4}}£©$£®
Ôò$f£¨{{A}-\frac{¦Ð}{4}}£©+f£¨{{B}-\frac{¦Ð}{4}}£©=12\sqrt{2}sin{A}sin{B}$£¬µÃ$sinA+sinB=6\sqrt{2}sinAsinB$¡­£¨7·Ö£©
½áºÏÕýÏÒ¶¨Àí$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2\sqrt{2}$µÃ$sinA=\frac{a}{{2\sqrt{2}}}£¬sinB=\frac{b}{{2\sqrt{2}}}$£¬
¼´a+b=3ab£®
½áºÏÓàÏÒ¶¨Àíc2=a2+b2-2abcosC£¬
±äÐεÃc2=£¨a+b£©2-2ab-2abcosC¼´3a2b2-ab-2=0£®¡­£¨10·Ö£©
½âµÃab=1»òab=-$\frac{2}{3}$£¨ÉáÈ¥£©£¬
¹Ê ${S_{¡÷ABC}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{4}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýµÄ»¯¼ò£¬¿¼²éÕýÏÒ¡¢ÓàÏÒ¶¨Àí£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèÔ²C£ºx2+y2+4x-6y=0£®
£¨1£©ÈôÔ²C¹ØÓÚÖ±Ïßl£ºa£¨x-2y£©-£¨2-a£©£¨2x+3y-4£©=0¶Ô³Æ£¬ÇóʵÊýa£»
£¨2£©ÇóÔ²C¹ØÓÚµãA£¨-2£¬1£©¶Ô³ÆµÄÔ²µÄ·½³Ì£»
£¨3£©ÈôÔ²CÓëÔ²C1£»x2+y2+Dx+2y+F=0¹ØÓÚÖ±Ïßx-2y+b=0¶Ô³Æ£¬ÇóD¡¢F¡¢bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªf£¨x£©=sinx+2cosx£¬Èôº¯Êýg£¨x£©=f£¨x£©-mÔÚx¡Ê£¨0£¬¦Ð£©ÉÏÓÐÁ½¸ö²»Í¬Áãµã¦Á¡¢¦Â£¬Ôòcos£¨¦Á+¦Â£©=-$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¶¨Òå·½³Ìf£¨x£©=f¡ä£¨x£©µÄʵÊý¸ùx0½Ð×öº¯Êýf£¨x£©µÄ¡°ÐÂפµã¡±£¬Èôº¯Êýg£¨x£©=x£¬h£¨x£©=ln£¨x+1£©£¬¦Õ£¨x£©=x3-1µÄÐÂפµã·Ö±ðΪ¦Á£¬¦Â£¬¦Ã£¬Ôò¦Á£¬¦Â£¬¦ÃµÄ´óС¹ØÏµÎª¦Ã£¾¦Á£¾¦Â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãÌõ¼þ£ºSn+an=$\frac{{n}^{2}+1}{{n}^{2}+n}$£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©²Â²âÊýÁÐ{an}µÄͨÏʽ£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©Çó$\underset{lim}{n¡ú¡Þ}$n2an£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¸ù¾ÝÊýÁм«Ï޵͍ÒåÖ¤Ã÷£º
£¨1£©$\underset{lim}{n¡ú¡Þ}£¨-1£©^{n}\frac{1}{{n}^{2}}$£»   
£¨2£©$\underset{lim}{n¡ú¡Þ}\frac{3n+1}{2n+1}$£»
£¨3£©$\underset{lim}{n¡ú¡Þ}$$\underset{\underbrace{0.999¡­9}}{n¸ö}$=1£»
£¨4£©$\underset{lim}{n¡ú¡Þ}\frac{sinn}{n}$=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Í¬Ê±Âú×㣺£¨i£© f£¨1£©=2£»£¨ii£©?x£¬y¡ÊR£¬f£¨x+y+1£©=f£¨x-y+1£©-f£¨x£©f£¨y£©£» £¨iii£© f£¨x£©ÔÚÇø¼ä[0£¬1]ÉÏÊǵ¥µ÷Ôöº¯Êý£®
£¨¢ñ£©Çóf£¨0£©ºÍf£¨-1£©µÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄÁãµã£»
£¨¢ó£©½â²»µÈʽf£¨x£©£¾$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª¦Á£¬¦ÂÊÇÈý´Îº¯Êýf£¨x£©=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bxµÄÁ½¸ö¼«Öµµã£¬ÇÒ ¦Á¡Ê£¨0£¬1£©£¬¦Â¡Ê£¨1£¬2£©£¬Ôò$\frac{b-1}{a-1}$µÄ·¶Î§£¨¡¡¡¡£©
A£®$£¨0£¬\frac{1}{2}£©$B£®£¨0£¬1£©C£®$£¨-\frac{1}{2}£¬0£©$D£®£¨-1£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©¶ÔÈÎÒâÕýÊýp£¬q¶¼ÓÐ$f£¨pq£©=f£¨p£©+f£¨q£©-\frac{1}{2}$£¬µ±x£¾4ʱ£¬f£¨x£©£¾$\frac{3}{2}$£¬ÇÒf£¨$\frac{1}{2}$£©=0£®
£¨1£©Çóf£¨2£©µÄÖµ£»
£¨2£©Ö¤Ã÷£ºº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
£¨3£©½â¹ØÓÚxµÄ²»µÈʽf£¨x£©+f£¨x+3£©£¾2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸