(本小题满分13分)已知函数
,
.
(Ⅰ)设
(其中
是
的导函数),求
的最大值;
(Ⅱ)求证: 当
时,有
;
(Ⅲ)设
,当
时,不等式
恒成立,求
的最大值.
(Ⅰ)当
时,
取得最大值
;
(Ⅱ)当
时,
.由(1)知:当
时,
,即
.
因此,有
.
(Ⅲ)整数
的最大值是
.
【解析】
试题分析:(Ⅰ)
,
所以
.
当
时,
;当
时,
.
因此,
在
上单调递增,在
上单调递减.
因此,当
时,
取得最大值
; ………………3分
(Ⅱ)当
时,
.由(1)知:当
时,
,即
.
因此,有
.………………7分
(Ⅲ)不等式
化为
所以
对任意
恒成立.令
,则
,
令![]()
,则
,所以函数
在
上单调递增.
因为
,
所以方程
在
上存在唯一实根
,且满足
.
当
,即
,当
,即
,
所以函数
在
上单调递减,在
上单调递增.
所以
.
所以
.故整数
的最大值是
. ……………13分
考点:本题主要考查了导数的运算、导数在函数单调性及不等式中的应用。
点评:较难题,利用导数求函数单调区间的方法,解题时注意函数的定义域,避免出错。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com