精英家教网 > 高中数学 > 题目详情

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.

(I)求椭圆C的方程;

(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

 

【答案】

(I) (II)

【解析】

试题分析:(Ⅰ) 

所以椭圆方程为                                             ……4分

(Ⅱ)由已知直线AB的斜率存在,设AB的方程为:

 ,得

得:,即                                       ……6分

, 

(1)若为直角顶点,则 ,即 ,

,所以上式可整理得,

,解,得,满足            ……8分

(2)若为直角顶点,不妨设以为直角顶点,,则满足:

,解得,代入椭圆方程,整理得,

解得,,满足   ……10分

时,三角形为直角三角形.    ……12分

考点:本小题主要考查圆的标准方程,椭圆的标准方程,椭圆的性质和直线与椭圆的位置关系.

点评:每年高考都会考查圆锥曲线问题,此类题目一般运算量较大,主要考查学生的运算求解能力和分析问题、解决问题的能力.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届吉林省白山市高三摸底考试理科数学试卷(解析版) 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.

(I)求椭圆C的方程;

(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

 

查看答案和解析>>

科目:高中数学 来源:2014届吉林省白山市高三摸底考试文科数学试卷(解析版) 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.

(I)求椭圆C的方程;

(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.

(I)求椭圆C的方程;

(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.

(I)求椭圆C的方程;

(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

查看答案和解析>>

同步练习册答案