精英家教网 > 高中数学 > 题目详情
已知各项均为正实数的数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立。
(1)求a1
(2)求数列{an}的通项公式;
(3)设bn=,Tn为数列的前n项和,求证:Tn<5。
解:(1)当n=1时,

解得
由条件知
所以
(2)当时,

所以


由条件知
所以
故正实数的数列{an}是首项为3,公差为2的等差数列,
所以an=2n+1。
(3)由(2)知
 ①
将上式两边同乘以
 ②
①-②,得




练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,满足a1=1,Tn=
4
3
-
1
3
(p-Sn)2
,其中p为常数.
(1)求p的值及数列{an}的通项公式;
(2)①是否存在正整数n,m,k(n<m<k),使得an,am,ak成等差数列?若存在,指出n,m,k的关系;若不存在,请说明理由;
②若对于任意的正整数n,都有an,2xan+1,2yan+2成等差数列,求出实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知各项均为正实数的数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立.
(Ⅰ)求a1
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
2an-1
Tn
为数列{
an
bn
}
的前n项和,求证Tn<5.

查看答案和解析>>

科目:高中数学 来源:武昌区模拟 题型:解答题

已知各项均为正实数的数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立.
(Ⅰ)求a1
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
2an-1
Tn
为数列{
an
bn
}
的前n项和,求证Tn<5.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省武汉市武昌区高三元月调考数学试卷(文科)(解析版) 题型:解答题

已知各项均为正实数的数列{an}的前n项和为Sn,4Sn=an2+2an-3对于一切n∈N*成立.
(Ⅰ)求a1
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设为数列的前n项和,求证Tn<5.

查看答案和解析>>

同步练习册答案