精英家教网 > 高中数学 > 题目详情
10.向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-1),若k$\overrightarrow{a}$+$\overrightarrow{b}$⊥$\overrightarrow{a}$-2$\overrightarrow{b}$,则k=(  )
A.3B.2C.-3D.-2

分析 求出向量,利用向量的垂直条件,列出方程求解即可.

解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-1),
k$\overrightarrow{a}$+$\overrightarrow{b}$=(k+2,2k-1),$\overrightarrow{a}$-2$\overrightarrow{b}$=(-3,4),
k$\overrightarrow{a}$+$\overrightarrow{b}$⊥$\overrightarrow{a}$-2$\overrightarrow{b}$,
可得:-3k-6+8k-4=0
则k=2.
故选:B.

点评 本题考查向量的坐标运算,向量垂直的充要条件的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{{4{a^{\;}}}}+\frac{y^2}{{{a^2}+1}}=1(a>0)$的焦点在x轴上,则它的离心率的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,四边形ABCD是边长为2的菱形,且∠BAD=60°,四边形ABEF是正方形,平面ABCD⊥平面ABEF,点G,H分别为边CD,DA的中点,点M是线段BE上一动点.
(1)求证:GH⊥DM;
(2)求三棱锥D-MGH的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点恰好是抛物线x2=4$\sqrt{2}y$的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点,满足直线PA与直线PB的倾斜角互补,证明直线AB的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若tanα=2,则sin2α-sinαcosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两条直线a,b,两个平面α,β,下面四个命题中不正确的是(  )
A.a⊥α,α∥β,b?β⇒a⊥bB.α∥β,a∥b,a⊥α⇒b⊥βC.a∥b,b⊥β⇒a⊥βD.a∥b,a∥α⇒b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^{x-3}},x≤2\\{log_a}x,x>2\end{array}\right.$(a>0,且a≠1)的值域是[2,+∞),则实数a的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足${a_1}=3,{a_{n+1}}={a_n}+2(n∈{N^*})$,其前n项和为Sn,则$\frac{{4{S_n}+39}}{{4{a_n}}}$的最小值为(  )
A.$\frac{7}{2}$B.$\frac{99}{28}$C.$\frac{71}{20}$D.$\frac{51}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若复数z=$\frac{2}{(1-i)^{2}}$+$\frac{3+i}{1-i}$的虚部为m,函数f(x)=x+$\frac{4}{x-1}$,x∈[2,3]的最小值为n.
(1)求m,n;
(2)求由曲线y=x,直线x=m,x=n以及x轴所围成平面图形的面积.

查看答案和解析>>

同步练习册答案