精英家教网 > 高中数学 > 题目详情
在函数f(x)=1gx的图象上有三点A、B、C,横坐标依次是m-1,m,m+1(m>2).
(1)试比较f(m-1)+f(m+1)与2f(m)的大小;
(2)解不等式f(x)>f(x2+x-2)
(3)求△ABC的面积S=g(m)的值域.
考点:对数函数的图像与性质
专题:函数的性质及应用
分析:(1)根据f(x)=1gx,具体表示出来,运用对数的性质比较,(2)转化为知
x>0
x2+x-2>0
x>x2+x-2
,求解即可.
(3)运用图形列出函数式子,化简判断出单调性,求解值域.
解答: 解:(1)f(m-1)+f(m+1)=lg(m-1)+lg(m+1)=lg(m2-1),
2f(m)=lgm2>lg(m2-1),
∴f(m-1)+f(m+1)<2f(m)
(2)由题意f(x)=1gx,f(x)>f(x2+x-2)知,
x>0
x2+x-2>0
x>x2+x-2

解得:1<x<
2

所以不等式的解集是{x|1<x<
2
}

(3)S=g(m)=S ABB1A1+S BB 1C1C-S AA1C1C
S=
1
2
[lg(m-1)+lgm]+
1
2
[lg(m+1)+lgm]-
1
2
[lg(m-1)+lg(m+1)]×2
S=
1
2
lg
m2
(m-1)(m+1)
=
1
2
lg
m2
m2-1
=
1
2
lg(1+
1
m2-1
),g(2)=
1
2
lg
4
3

因为m>2时,单调递减,所以0<S<
1
2
lg
4
3

故△ABC的面积S=g(m)的值域为(0,lg2-
1
2
lg3)
点评:本题考察了对数函数的概念,性质,运算性质,综合解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题:①sin2x+
4
sin2x
的最小值为4.
②若x、y∈R+,且
1
x
+
9
y
=1,则x+y的最小值是12.
③点P(-1,2)到直线l:ax+y+a2+a=0的距离不小于2.
④直线y=x•tanα(0<α<π,α≠
π
2
)的倾斜角为α.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于两条不同的直线m、n与两个不同的平面α、β,有下列四个命题:
①若m∥α,n∥β且α∥β,则m∥n;
②若m∥α,n⊥β且α⊥β,则m∥n;
③若m?α,n?β且α⊥β,则m⊥n;
④若m⊥α,n⊥β且α⊥β,则m⊥n.
其中假命题有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

求使等式
24
35
=
20
01
M
成立的矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}通项公式an=2nsin(
2
-
π
3
)+
3
ncos
2
,前n项和为Sn,则S2015=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )
A、
3
B、
3
C、
9
D、
16π
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期及单调递增区间;
(2)若x∈[
π
3
3
]
,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣增长,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下的公式:f(x)=
-0.1x2+2.6x+43(0<x≤10)
59(10<x≤16)
-3x+107(16<x≤30)

(1)开讲多少分钟后,学生的接受能力最强?能维持多少时间?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?

查看答案和解析>>

同步练习册答案