精英家教网 > 高中数学 > 题目详情
14.下列四组数:(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$; (2)2,$-2\sqrt{2}$,4;(3)a2,a4,a8;(4)lg2,lg4,lg8;那么(  )
A.(1)是等差数列,(2)是等比数列B.(2)和(3)是等比数列
C.(3)是等比数列,(4)是等差数列D.(2)是等比数列,(4)是等差数列

分析 (1)是公比为$\frac{1}{2}$的等比数列;
(2)是公比为-$\sqrt{2}$的等比数列;
(3)对a分类讨论即可得出;
(4)lg2,lg4,lg8,即为lg2,2lg2,3lg2,是公差为lg2的等差数列.

解答 解:(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,是公比为$\frac{1}{2}$的等比数列;
(2)2,$-2\sqrt{2}$,4,是公比为-$\sqrt{2}$的等比数列;
(3)a2,a4,a8,a=0时是等差数列;a=1时既是等差数列,又是等比数列;a≠0,1时,是等比数列;
(4)lg2,lg4,lg8,即为lg2,2lg2,3lg2,是公差为lg2的等差数列.
因此D正确,
故选:D.

点评 本题考查了等差数列与等比数列的定义及其通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.不等式组$\left\{\begin{array}{l}{x-2y≥-5}\\{x+y≥1}\\{y≤4}\end{array}\right.$,所表示的区域的面积是(  )
A.15B.6C.30D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合${A}=\left\{{x\left|{\frac{x}{x-1}≥0}\right.}\right\}$,集合 B={x|lnx≥0},则“x∈A”是“x∈B”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)={2^{\sqrt{\frac{1-x}{x+2}}}}$的定义域是(-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等式$\frac{{f({-x})-f(x)}}{x}≥0$的解集(  )
A.[-2,0]∪[2,+∞)B.(-∞,-2]∪(0,2]C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数y=f(x),x∈R满足f(x+1)=f(x-1),且当x∈(-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,则h(x)=f(x)-g(x)在区间[-6,9]内的零点个数是(  )
A.15B.14C.13D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥A-BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,BC=2,M,D分别为AB1,CC1的中点.
(Ⅰ)求证:BD⊥AB1
(Ⅱ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数y=f(x)的定义域为D,如果存在非零常数T,对于任意x∈D,都有f(x+T)=T•f(x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f(x)的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”y=f(x)的“似周期”为-1,那么它是周期为2的周期函数;②函数f(x)=x是“似周期函数”; ③函数f(x)=2-x是“似周期函数”; ④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$a-\frac{2}{{2}^{x}+1}$.
(1)证明:不论a为何实数f(x)恒为增函数;
(2)当f(x)为奇函数时,确定实数a的值,并求函数f(x)的值域.

查看答案和解析>>

同步练习册答案