精英家教网 > 高中数学 > 题目详情
1.若a>0,$x=\frac{{\sqrt{{{(sin1)}^a}}+\sqrt{{{(cos1)}^a}}}}{{\sqrt{{{(sin1)}^a}+{{(cos1)}^a}}}}$,$y=\sqrt{{{(sin1)}^a}+{{(cos1)}^a}}$,$z=\frac{{2{{(sin1)}^a}•{{(cos1)}^a}}}{{{{(sin1)}^a}+{{(cos1)}^a}}}$,则x,y,z的大小顺序为(  )
A.x>z>yB.x>y>zC.z>x>yD.z>y>x

分析 令a=2,将x,y,z分别化简,比较大小,利用排除法选出答案.

解答 解:令a=2,则x=sin1+cos1,y=1,z=2sin21cos21=$\frac{1}{2}sin2$≤$\frac{1}{2}$,
∴y>z,排除A,C,D.
故选:B.

点评 本题考查了三角函数恒等变换,利用特殊值验证可快速解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(4,-3),$\overrightarrow{c}$=($\frac{1}{2}$,3),则3$\overrightarrow{a}$-$\overrightarrow{b}$+2$\overrightarrow{c}$的坐标为(-9,21).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线y=m(0<m<2)与函数y=sinωx+$\sqrt{3}$cosωx(ω>0)的图象依次交于A(1,m),B(5,m),C(7,m)三点,则ω=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.三棱锥P-ABC中,PA=PB=PC,PO⊥平面ABC于O.则O为△ABC的外心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$(ω>0)的最小正周期为3π.
(1)求函数f(x)的表达式;
(2)求函数f(x)在$({-\frac{π}{2},π})$的值域;
(3)在△ABC中,a,b,c分别为角A,B,C所对的边,且a<b<c,$\sqrt{3}$a=2csinA,若f($\frac{3}{2}$A+$\frac{π}{2}$)=$\frac{11}{13}$,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x+sin({2x-\frac{π}{6}})$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若$x∈({0,\frac{π}{2}})$,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一个四棱锥的底面是边长为4的正方形,各侧棱都等于3,那么这个四棱锥的高等于(  )
A.1B.$\sqrt{2}$C.5D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:若2-x-2y>lnx-1n(-y)(x>0,y<0),则x+y<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x+y-a≤0\\ x-y≥0\\ y+a≥0\end{array}\right.$,若变量x的最大值为6,则变量y的取值范围为$[-3,\frac{3}{2}]$.

查看答案和解析>>

同步练习册答案