精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=e|x|+x2,若实数a满足f(log2a)≤f(1),则a的取值范围是(  )
A.(0,1]B.[$\frac{1}{2}$,2]C.(0,2]D.[2,+∞)

分析 可判函数f(x)为偶函数,且在[0,+∞)上是增函数,原不等式可化为|log2a|≤1,由对数函数的单调性可解.

解答 解:由题意,f(x)为偶函数,在[0,+∞)上是增函数,
∴不等式f(log2a)≤f(1)可化为|log2a|≤1,
即-1≤log2a≤1,由对数函数的单调性可得$\frac{1}{2}$≤a≤2,
故选:B.

点评 本题考查函数的单调性,涉及函数的奇偶性和对数的性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t是参数),圆C的极坐标方程为ρ=4cos(θ+$\frac{π}{4}$).
(Ⅰ)求圆心C的直角坐标;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=e|x|,则$\int_{-2}^4{f(x)}dx$(  )
A.e4+e2-2B.e4-e2C.e4-e2+2D.e4-e2-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$(a>b>0)的离心率$e=\frac{{\sqrt{6}}}{3}$,直线AB分别交椭圆下顶点A(0,-1)和右顶点B.         
(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果框图所给的程序运行结果为S=35,那么判断框中整数m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等腰梯形ABCD中,AB∥CD,AB=4,CD=2,∠A=60°,G为对角线AC上一点,且$\overrightarrow{AG}•\overrightarrow{AB}$=6,过G的直线分别交两腰AD,BC于M,N两点,若$\overrightarrow{AC}$=m$\overrightarrow{AM}+n\overrightarrow{AN}$,则$\frac{1}{m}+\frac{1}{n+1}$的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sinx-bcosx(其中b为实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是(  )
A.函数f(x)的图象向左平移$\frac{π}{3}$个单位得到的函数是偶函数
B.不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π
C.函数f(x)的图象的一个对称中心为($\frac{2}{3}$π,0)
D.函数f(x)在区间[$\frac{π}{6}$,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a是实数,且$\frac{2a}{1+i}$+1+i是实数,则a=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有编号为D1,D2,…,D10的10个零件,测量其直径(单位:mm),得到下面数据:
其中直径在区间(148,152]内的零件为一等品.
编号D1D2D3D4D5D6D7D8D9D10
直径151148149151149152147146153148
(1)从上述10个零件中,随机抽取2个,求这2个零件均为一等品的概率;
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案