精英家教网 > 高中数学 > 题目详情

已知f(x)是偶函数,且在(0,+∞)上是增函数,当数学公式时,不等式f(ax+1)≤f(x-3)恒成立,则实数a的取值范围是


  1. A.
    [-3,3]
  2. B.
    [-7,1]
  3. C.
    [-7,3]
  4. D.
    [-3,1]
D
分析:由已知中f(x)是偶函数,,且f(x)在(0,+∞)上是增函数,由偶函数在对称区间上单调性相反,易得f(x)在(-∞,0)上为减函数,又由若x∈[,1]时,不等式f(ax+1)≤f(x-3)恒成立,结合函数恒成立的条件,可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.
解答:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数
∴f(x)在(-∞,0)上为减函数
当x∈[,1]时
x-3∈[,-2]
故f(x-3)≥f(2)
若x∈[,1]时,不等式f(ax+1)≤f(x-3)恒成立,
则当x∈[,1]时,|ax+1|≤2恒成立
解得-3≤a≤1
故选D
点评:本题考查的知识点是奇偶性与单调性的综合,其中根据已知条件结合偶函数在对称区间上单调性相反,证得f(x)在(-∞,0)上为减函数,进而给出x∈[,1]时f(x-3)的最小值,是解答本题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知f(x)是偶函数,x∈R,若将f(x)的图象向右平移一个单位又得到一个奇函数,若f(2)=-1,则f(1)+f(2)+f(3)+…+f(2006)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,则实数a的取值范围是(  )
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,当x≥0时,f(x)=-x2+4x,求当x<0时,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)已知f(x)是偶函数,当.x∈[0,
π
2
]时,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),则 a,b,c 的大小关系为(  )

查看答案和解析>>

同步练习册答案