精英家教网 > 高中数学 > 题目详情

△ABC的三个顶点为A(-3,0),B(2,1),C(-2,3),求:
(1)BC所在直线的方程;
(2)BC边上中线AD所在直线的方程;
(3)BC边上的垂直平分线DE的方程.

解:(1)因为直线BC经过B(2,1)和C(-2,3)两点,由两点式得BC的方程为y-1=(x-2),即x+2y-4=0.
(2)设BC中点D的坐标为(x,y),则x==0,y==2.
BC边的中线AD过点A(-3,0),D(0,2)两点,由截距式得AD所在直线方程为+=1,即2x-3y+6=0.
(3)BC的斜率k1=-,则BC的垂直平分线DE的斜率k2=2,由斜截式得直线DE的方程为y=2x+2.
分析:(1)利用B和C的坐标直接求出直线方程即可;(2)根据中点坐标公式求出B与C的中点D的坐标,利用A和D的坐标写出中线方程即可;(3)求出直线BC的斜率,然后根据两直线垂直时斜率乘积为-1求出BC垂直平分线的斜率,由(2)中D的坐标,写出直线DE的方程即可.
点评:考查学生会根据一点和斜率或两点坐标写出直线的方程,掌握两直线垂直时斜率的关系.会利用中点坐标公式求线段的中点坐标.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点为A(4,1)、B(7,5)、C(3,7)
(1)求BC边上的垂直平分线所在直线的方程.
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间坐标系中,已知直角三角形ABC的三个顶点为A(-3,-2,1)、B(-1,-1,-1)、C(-5,x,0),则x的值为
0或9
0或9

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个顶点为A(0,4),B(-2,6),C(8,2),求此三角形AB边上中线所在直线的方程和BC边上高线所在直线的方程.

查看答案和解析>>

同步练习册答案