精英家教网 > 高中数学 > 题目详情
(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,是棱的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:
(2) 求证:
(3)求直线与直线所成角的余弦值.
解:连结AC、BD交于点O,连结OP。

∵四边形ABCD是正方形,∴AC⊥BD
∵PA=PC,∴OP⊥AC,同理OP⊥BD,
以O为原点,分别为轴的正方向,建立空间直角坐标系 …2分

       …………………6分

…………………10分

…………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,为正三角形,平面的中点,

(1)求证:DM//面ABC;   
(2)平面平面
(3)求直线AD与面AEC所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)如图,在正方体中,
分别为棱的中点.
(1)求证:∥平面
(2)求证:平面⊥平面
(3)如果,一个动点从点出发在正方体的
表面上依次经过棱上的点,最终又回到点,指出整个路线长度的最小值并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b是异面直线,直线c∥a,则c与b的位置关系是 
A.相交B.异面C.平行D.异面或相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D为B1C1的中点。
(Ⅰ)证明:B1C⊥面A1BD
(Ⅱ)求二面角B—AC—B1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
在三棱锥中,△ABC是边长为4的正三角形,平面,M、N分别为AB、SB的中点。

(1)证明:
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分14分)
在三棱锥中,是边长为的正三角形,平面⊥平面分别为的中点。
(1)证明:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点O为正方体ABCD—A1B1C1D1底面ABCD的中心,则下列结论正确的是(   )
A.直线平面AB1C1B.直线OA1//直线BD1
C.直线直线ADD.直线OA1//平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正四面体的顶点分别在两两垂直的三条射线上,给出下列四个命题:  
①多面体是正三棱锥;
②直线平面
③直线所成的角为;       
④二面角.
其中真命题有_______________(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案