分析 (1)(1+x)2n-1的展开式中含xn的项的系数为$C_{2n-1}^n$,由可知,(1+x)n-1(1+x)n的展开式中含xn的项的系数为$C_{n-1}^0C_n^n+C_{n-1}^1C_n^{n-1}+…+C_{n-1}^{n-1}C_n^1$.即可证明.
(2)当k∈N*时,$kC_n^k=k•\frac{n!}{k!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}$=$n•\frac{(n-1)!}{(k-1)!(n-k)!}=nC_{n-1}^{k-1}$.即可证明.
解答 (1)解:(1+x)2n-1的展开式中含xn的项的系数为$C_{2n-1}^n$,
由${(1+x)^{n-1}}{(1+x)^n}=(C_{n-1}^0+C_{n-1}^1x+…+C_{n-1}^{n-1}{x^{n-1}})(C_n^0+C_n^1x+…+C_n^n{x^n})$
可知,(1+x)n-1(1+x)n的展开式中含xn的项的系数为$C_{n-1}^0C_n^n+C_{n-1}^1C_n^{n-1}+…+C_{n-1}^{n-1}C_n^1$.
所以$C_{n-1}^0C_n^n+C_{n-1}^1C_n^{n-1}+…+C_{n-1}^{n-1}C_n^1=C_{2n-1}^n$.
(2)证明:当k∈N*时,$kC_n^k=k•\frac{n!}{k!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}$=$n•\frac{(n-1)!}{(k-1)!(n-k)!}=nC_{n-1}^{k-1}$.
所以${(C_n^1)^2}+2{(C_n^2)^2}+…+n{(C_n^n)^2}=\sum_{k=1}^n{[k{{(C_n^k)}^2}]}=\sum_{k=1}^n{(kC_n^kC_n^k)}=\sum_{k=1}^n{(nC_{n-1}^{k-1}C_n^k)}$=$n\sum_{k=1}^n{(C_{n-1}^{k-1}C_n^k)}=n\sum_{k=1}^n{(C_{n-1}^{n-k}C_n^k)}$.
由(1)知$C_{n-1}^0C_n^n+C_{n-1}^1C_n^{n-1}+…+C_{n-1}^{n-1}C_n^1=C_{2n-1}^n$,即$\sum_{k=1}^n{(C_{n-1}^{n-k}C_n^k)}=C_{2n-1}^n$,
所以${(C_n^1)^2}+2{(C_n^2)^2}+…+n{(C_n^n)^2}=nC_{2n-1}^n$.
点评 本题考查了二项式定理的性质、组合数的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,4) | B. | [4,5) | C. | (-3,-2) | D. | (2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 4$\sqrt{3}$ | D. | 8$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ | |
| B. | 如果平面α⊥平面 β,那么平面α内一定存在直线平行于平面β | |
| C. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β | |
| D. | 如果平面α⊥平面 β,过α内任意一点作交线的垂线,那么此垂线必垂直于β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)•g(x)是偶函数 | B. | f(x)+x2是奇函数 | C. | f(x)-sinx是奇函数 | D. | g(x)+2x是奇函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com