精英家教网 > 高中数学 > 题目详情
(2012•嘉定区三模)如图,四棱锥P-ABCD的底面是∠BAD=60°的菱形,且PA=PC,PB=BD,则该四棱锥的主视图(主视图投影平面与平面PAC平行)可能是(  )
分析:由已知中四棱锥P-ABCD的底面是∠BAD=60°的菱形,我们根据棱锥的正视图为三角形,结合看不到的棱画为虚线,看到的棱画为实线,比照四个答案中的图形,即可得到答案.
解答:解:由已知中的几何体P-ABCD为四棱锥
故其正视图的外边框为三角形
又∵四棱锥P-ABCD的底面是∠BAD=60°的菱形,
∴PD棱在正视图中看不到,故应该画为虚线,
PB棱在正视图中可能看到,故应该画为实线.
故选B.
点评:本题考查的知识点是简单空间图形的三视图,其中要注意三视图中看不到的棱(或轮廓线)画为虚线,本题易忽略此点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•嘉定区三模)已知动圆圆心在抛物线y2=4x上,且动圆恒与直线x=-1相切,则此动圆必过定点
(1,0)
(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)在直角坐标系xOy中,直线l的参数方程是
x=t
y=
3
t
(l为参数),以Ox的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ,则圆C上的点到直线l距离的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设集合A={x|x<1,x∈R},B={x|x2<4,x∈R},则A∩B=
{x|-2<x<1}
{x|-2<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设a、b∈R,i为虚数单位,若(a+i)i=b+i,则复数z=a+bi的模为
2
2

查看答案和解析>>

同步练习册答案