¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÈôf£¨x£©=sin£¨2x+¦Õ£©ÊÇżº¯Êý£¬Ôò?=2k¦Ð+
¦Ð
2
£¬k¡ÊZ
£»
¢Úº¯Êýf(x)=cos2x-2
3
sinxcosx
ÔÚÇø¼ä[-
¦Ð
6
£¬
¦Ð
3
]
ÉÏÊǵ¥µ÷µÝÔö£»
¢ÛÒÑÖªa£¬b¡ÊR£¬Ôò¡°a£¾b£¾0¡±ÊÇ¡°(
1
2
)a£¼(
1
2
)b
¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÜÈôxlog34=1£¬Ôò4x+4-x=
10
3
£»
¢ÝÔÚ¡÷ABCÖУ¬ÈôtanA+tanB+tanC£¾0£¬Ôò¡÷ABC±ØΪÈñ½ÇÈý½ÇÐΣ®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ______£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©£®
¢ÙÈôf£¨x£©=sin£¨2x+¦Õ£©ÊÇżº¯Êý£¬ÔòÓÉżº¯ÊýµÄÐÔÖʿɵöԳÆÖáΪyÖáÇҸõãÈ¡µÃº¯ÊýµÄ×îÖµ£¬Ôòf£¨0£©=¡À1£¬´úÈë¿ÉµÃ£¬¦Õ=k¦Ð+
¦Ð
2
£¬k¡ÊZ
¹Ê¢Ù´íÎó
¢Úº¯Êýf(x)=cos2x-2
3
sinxcosx
=cos2x-
3
sin2x
=2cos(2x+
¦Ð
3
)
£¬ÔÚÇø¼ä[-
¦Ð
6
£¬
¦Ð
3
]
ÉÏÊǵ¥µ÷µÝ¼õ£¬¹Ê¢Ú´íÎó
¢Ûa£¾b£¾0?(
1
2
)a£¼(
1
2
)b
£¬µ«ÓÉ(
1
2
)a£¼(
1
2
)b
Ö»¿ÉµÃa£¾b£¬¼´a£¾b£¾0ÊÇ(
1
2
)a£¼(
1
2
)b
µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬¹Ê¢ÛÕýÈ·
¢ÜÓÉxlog34=1?x=log43£¬Ôò4x+4-x=4log43+
1
4log43
=3+
1
3
=
10
3
£¬¹Ê¢ÜÕýÈ·
¢ÝÓÉÈý½ÇÐεÄÄڽǺͶ¨Àí¿ÉÖª£¬Èý½ÇÐεÄÄÚ½Ç×î¶àÓÐÒ»¸ö¶Û½Ç£¬¹Ê¿ÉÉèA£¬BΪÈñ½Ç£¬tanA£¾0£¬tanB£¾0
ÀûÓÃÄڽǺ͹«Ê½¿É°ÑtanA+tanB+tanC£¾0?tanA+tanB-tan£¨A+B£©£¾0£¬ÀûÓÃÁ½½ÇºÍµÄÕýÇй«Ê½Õ¹¿ªÕûÀí¿ÉµÃtanAtanB£¾1£¬Ôò¿ÉµÃtanA£¾cotB=tan£¨(
¦Ð
2
-B)
£¬ÔòÓÐA£¾
1
2
¦Ð-B
£¬ËùÒÔÓÐA+B£¾
¦Ð
2
£¬´Ó¶ø¿ÉµÃC£¼
¦Ð
2
¹Ê¢ÝÕýÈ·
¹Ê´ð°¸Îª£º¢Û¢Ü¢Ý
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÔÚÈý½ÇÐÎABCÖУ¬ÈôA£¾BÔòsinA£¾sinB£»
¢ÚÈôÊýÁÐ{bn}µÄÇ°nÏîºÍSn=n2+2n+1£®ÔòÊýÁÐ{bn}´ÓµÚ¶þÏîÆð³ÉµÈ²îÊýÁУ»
¢ÛÒÑÖªSnÊǵȲîÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôS7£¾S8ÔòS9£¾S8£»
¢ÜÒÑÖªµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èôa5=5a3Ôò
S9S5
=9£»
¢ÝÈô{an}ÊǵȱÈÊýÁУ¬ÇÒSn=3n+1+r£¬Ôòr=-1£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£º
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÈô4a=3£¬log45=b£¬Ôòlog4
95
=a2-b
£»
¢Úº¯Êýf(x)=0.51+2x-x2µÄµ¥µ÷µÝ¼õÇø¼äÊÇ[1£¬+¡Þ£©£»
¢Ûm¡Ý-1£¬Ôòº¯Êýy=lg£¨x2-2x-m£©µÄÖµÓòΪR£»
¢ÜÈôÓ³Éäf£ºA¡úBΪµ¥µ÷º¯Êý£¬Ôò¶ÔÓÚÈÎÒâb¡ÊB£¬ËüÖÁ¶àÓÐÒ»¸öÔ­Ïó£»
¢Ýº¯Êýy=exµÄͼÏóÓ뺯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Ôòf£¨e3£©=3£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
¢Û¢Ü¢Ý
¢Û¢Ü¢Ý
£¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÔÚºáÏßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
¢Ú¢Û¢Ý
¢Ú¢Û¢Ý
£¨ÌîÐòºÅ£©£®
¢ÙÈô
a
b
=0£¬ÔòÒ»¶¨ÓÐ
a
¡Í
b
£»  ¢Ú?x£¬y¡ÊR£¬sin£¨x-y£©=sinx-siny£»
¢Û?a¡Ê£¨0£¬1£©¡È£¨1£¬+¡Þ£©£¬º¯Êýf£¨x£©=a1-2x+1¶¼ºã¹ý¶¨µã(
1
2
£¬2)
£»
¢Ü·½³Ìx2+y2+Dx+Ey+F=0±íʾԲµÄ³äÒªÌõ¼þÊÇD2+E2-4F¡Ý0£»
¢ÝÈô´æÔÚÓÐÐòʵÊý¶Ô£¨x£¬y£©£¬Ê¹µÃ
OP
=x
OA
+y
OB
£¬ÔòO£¬P£¬A£¬BËĵ㹲Ã森

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ£Ä£Ä⣩ÒÑÖªf£¨x£©ÔÚx¡Ê[a£¬b]ÉϵÄ×î´óֵΪM£¬×îСֵΪm£¬¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÈô¶ÔÈκÎx¡Ê[a£¬b]¶¼ÓÐp¡Üf£¨x£©£¬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬m]£»
¢ÚÈô¶ÔÈκÎx¡Ê[a£¬b]¶¼ÓÐp¡Üf£¨x£©£¬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬M]£»
¢ÛÈô¹ØÓÚxµÄ·½³Ìp=f£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÓн⣬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ[m£¬M]£»
¢ÜÈô¹ØÓÚxµÄ²»µÈʽp¡Üf£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÓн⣬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬m]£»
¢ÝÈô¹ØÓÚxµÄ²»µÈʽp¡Üf£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÓн⣬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬M]£»
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£¨ÌîÐòºÅ£©£®
¢Ùº¯Êýy=sinx£¨x¡Ê[-¦Ð£¬¦Ð]£©µÄͼÏóÓëxÖáΧ³ÉµÄͼÐεÄÃæ»ýS=
¡Ò
¦Ð
-¦Ð
sinxdx
£»
¢Ú
C
r+1
n+1
=
C
r+1
n
+
C
r
n
£»
¢ÛÔÚ£¨a+b£©nµÄÕ¹¿ªÊ½ÖУ¬ÆæÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍµÈÓÚżÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍ£»
¢Üi+i2+i3+¡­i2012=0£»
¢ÝÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ
1
n+1
+
1
n+2
+
1
n+3
+¡­+
1
2n
£¾
13
24
£¬(n¡Ý2£¬n¡ÊN*)
µÄ¹ý³ÌÖУ¬ÓɼÙÉèn=k³ÉÁ¢ÍƵ½n=k+1³ÉÁ¢Ê±£¬Ö»ÐèÖ¤Ã÷
1
k+1
+
1
k+2
+
1
k+3
+¡­+
1
2k
+
1
2k+1
+
1
2(k+1)
£¾
13
24
¼´¿É£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸