精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(),一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费,为了了解居民用水情况,通过抽祥,获得了某年位居民毎人的月均用水量(单位:吨),将数据按照分成组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)若该市有万居民,估计全市居民中月均用水量不低于吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水量不超过标准(),估计的值(精确到),并说明理由.

【答案】(1) ;(2) 万;(3)2.73.

【解析】(1) 由概率统计相关知识,各组频率之和的值为,频率=(频率/组距) 组距,

,解得.

(2) 由图,不低于吨的人数所占比例为,全市月圴用水量不低于吨的人数为(万).

(3) 由图可知,月圴用水量小于吨的居民人数所占比例为.即的居民用水量小于吨,同理,的居民用水量小于吨,故.

假设月圴用水量平均分布,则(吨).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为;小李后掷一枚骰子,向上的点数记为.

(1)求能被 整除的概率.

(2)规定:若,则小王赢;若,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.

(Ⅰ)求f()的值;

(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数.

讨论的单调性;

成立,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x0x0+是函数f(x)=cos2wxsin2wx(ω>0)的两个相邻的零点

(1)求的值;

(2)若对任意,都有f(x)﹣m≤0,求实数m的取值范围.

(3)若关于的方程上有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(﹣ ).

(Ⅰ)若sinα=,求cos∠POQ;

(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知O为坐标原点,向量,点P满足

)记函数·,求函数的最小正周期;

)若OPC三点共线,求的值.

查看答案和解析>>

同步练习册答案