在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若Sn+an>m对任意的正整数n恒成立,求常数m的取值范围.
(Ⅰ)an=3n﹣2,bn=2•3n﹣1;(Ⅱ){m|m<3}
解析试题分析:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q(q>0),由已知得,解得d=q=3,所以an=3n﹣2,bn=2•3n﹣1;(Ⅱ)由(Ⅰ)知,从而,则3n+3n﹣3>m对任意的正整数n恒成立,构造函数f(n)=3n+3n﹣3,则
f(n+1)﹣f(n)=2•3n﹣3>0即f(n)单调递增,所以m<f(1)=3,答案为{m|m<3}.
试题解析:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q(q>0).
由题意,得,解得d=q=3.
∴an=3n﹣2,bn=2•3n﹣1;
(Ⅱ)∵Sn+an>m对任意的正整数n恒成立,
∴3n+3n﹣3>m对任意的正整数n恒成立,
令f(n)=3n+3n﹣3,则f(n+1)﹣f(n)=2•3n﹣3>0,
∴f(n)单调递增,
∴m<f(1)=3.
∴常数m的取值范围{m|m<3}
考点:1.等差数列和等比数列的通项公式;2.等比数列的求和公式;3.与正整数有关的不等式恒成立问题
科目:高中数学 来源: 题型:解答题
已知等差数列{an}的前n项和为Sn,且满足Sn=n2﹣n.
(1)求an;
(2)设数列{bn}满足bn+1=2bn﹣an且b1=4,
(i)证明:数列{bn﹣2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn﹣1•bn+1与bn2的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在等差数列中,,,记数列的前项和为.
(1)求数列的通项公式;
(2)是否存在正整数、,且,使得、、成等比数列?若存在,求出所有符合条件的、的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2.[来
(1)求{an}的通项公式;(2)设bn=,数列{bn}的前n项和为Tn,求Tn的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是首项的递增等差数列,为其前项和,且.
(1)求数列的通项公式;
(2)设数列满足,为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com