精英家教网 > 高中数学 > 题目详情
1.若复数z满足||z+2i|-|z-2i||=3,则复数z在复平面内对应点的轨迹是(  )
A.线段B.C.椭圆D.双曲线

分析 利用复数的几何意义判断轨迹图形即可.

解答 解:复数z满足||z+2i|-|z-2i||=3,
可知复数z满足双曲线的定义,
故选:D.

点评 本题考查双曲线的定义的应用,复数的几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.曲线$y=\frac{1}{x}$与y=kx相交于P、Q两点,当|PQ|最小时,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\frac{x}{e^x}$,f′(x)为f(x)的导函数,定义f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N*),经计算f1(x)=$\frac{1-x}{e^x}$,f2(x)=$\frac{x-2}{e^x}$,f3(x)=$\frac{3-x}{e^x}$,…,根据以上事实,由归纳可得:当n∈N*时,fn(x)=f(x)=$\frac{n-x}{{e}^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.K为小于9的实数时,曲线$\frac{x^2}{25}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{25-K}-\frac{y^2}{K-9}=1$一定有相同的(  )
A.焦距B.准线C.顶点D.离心率

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在平面直角坐标系xOy中,以正方形ABCD的两个顶点A,B为焦点,且过点C,D的双曲线的离心率是$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用定义法证明函数y=x3-1在R上是单调递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且△x=1时,函数增量△y和平均变化率$\frac{△y}{△x}$;
(2)求当x1=4,且△x=0.1时,函数增量△y和平均变化率$\frac{△y}{△x}$;
(3)若设x2=x1+△x,分析(1)(2)问中的平均变化率的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在R上的函数,其导函数为f′(x),若f(x)-f′(x)<1,f(0)=2016,则不等式f(x)>2015•ex+1(其中e为自然对数的底数)的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:曲线C1:$\frac{{x}^{2}}{{k}^{2}}$+$\frac{{y}^{2}}{2k+8}$=1表示焦点在x轴上的椭圆,命题q:(k-1)x2+(k-5)y2=1表示双曲线,若p或q为真,p且q为假,求k的取值范围.

查看答案和解析>>

同步练习册答案