精英家教网 > 高中数学 > 题目详情
试题大类:高考真题;题型:解答题;学期:2008年;单元:2008年普通高等学校夏季招生考试数学文史类(重庆卷);知识点:空间直线和平面;难度:较难;其它备注:20主观题;分值:12$如图,α和β为平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小为,求:

(1)点B到平面α的距离;

(2)异面直线l与AB所成的角(用反三角函数表示).

解:(1)如图(1),过点B′作直线B′C∥A′A且使B′C=A′A.

(1)

过点B作BD⊥CB′,交CB′的延长线于D.

由已知AA′⊥l,可得DB′⊥l,又已知BB′⊥l,故l⊥平面BB′D,得BD⊥l.

又因BD⊥CB′,从而BD⊥平面α,BD之长即为点B到平面α的距离.

因B′C⊥l且BB′⊥l,

故∠BB′C为二面角α-l-β的平面角.

由题意,∠BB′C=,因此在Rt△BB′D中,BB′=2,∠BB′D=π-∠BB′C=,BD=BB′·sin∠BB′D =.

(2)连接AC、BC.因B′C∥A′A,B′C=A′A,AA′⊥l,知A′ACB′为矩形,故AC∥l.所以∠BAC或其补角为异面直线l与AB所成的角.

在△BB′C中,B′B=2,B′C=3,∠BB′C=,则由余弦定理,

BC==.

因BD⊥平面α,且DC⊥CA,由三垂线定理知AC⊥BC,

故在△ABC中,∠BCA=,sin∠BAC=.

因此,异面直线l与AB所成的角为arcsin.

练习册系列答案
相关习题

同步练习册答案