精英家教网 > 高中数学 > 题目详情
已知定点A(-3,0),两动点B、C分别在y轴和x轴上运动,且满足
(1)求动点Q的轨迹E的方程;
(2)过点G(0,1)的直线l与轨迹E在x轴上部分交于M、N两点,线段MN的垂直平分线与x轴交于D点,求D点横坐标的取值范围.
【答案】分析:(1)设点B、C、Q的坐标分别为(0,b)、(c,0)、(x,y),由已知得,由此得动点E的轨迹E的方程.
(2)设直线l的方程为x=k(y-1),代入轨迹E的方程y2=4x中,整理得y2-4ky+4k=0,由已知得(4k)2-4×4k>0且k>0,解得k>1.由根与系数的关系可得MN的中点坐标为(k(2k-1),2k).由此能求出D点的横坐标的取值范围.
解答:解:(1)设点B、C、Q的坐标分别为(0,b)、(c,0)、(x,y),
(2)设直线l的方程为x=k(y-1),代入轨迹E的方程y2=4x中,整理得y2-4ky+4k=0
由已知得(4k)2-4×4k>0且k>0,解得k>1.
由根与系数的关系可得MN的中点坐标为(k(2k-1),2k).
∴线段MN垂直平分线方程为y-2k=k[x-k(2k-1)].
令y=0,得D点的横坐标为x=2k2-k+2.
∵k>1,∴x>3,∴D点的横坐标的取值范围为(3,+∞).
点评:本题考查动点的轨迹方程的求法和求D点的横坐标的取值范围.解题时要认真审题,注意挖掘题设中的隐含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点A(3,0),p是圆O:x2+y2=1上的一动点,且∠AOP的平分线交直线PA于Q,求点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(-3,0),两动点B、C分别在y轴和x轴上运动,且满足
AB
BC
=0,
CQ
=2
BC

(1)求动点Q的轨迹E的方程;
(2)过点G(0,1)的直线l与轨迹E在x轴上部分交于M、N两点,线段MN的垂直平分线与x轴交于D点,求D点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•揭阳一模)已知定点A(-3,0),MN分别为x轴、y轴上的动点(M、N不重合),且AN⊥MN,点P在直线MN上,
NP
=
3
2
MP

(1)求动点P的轨迹C的方程;
(2)设点Q是曲线x2+y2-8x+15=0上任一点,试探究在轨迹C上是否存在点T?使得点T到点Q的距离最小,若存在,求出该最小距离和点T的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(-3,0),B(3,0),动点P在抛物线y2=2x上的移动,则
PA
PB
的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(3,0)和定圆C:(x+3)2+y2=16,动圆和圆C相外切,并且过点A,求动圆圆心P的轨迹方程.

查看答案和解析>>

同步练习册答案