精英家教网 > 高中数学 > 题目详情
已知第一象限的点P(a,b)在直线x+2y-1=0上,则
1
a
+
1
b
的最小值为
 
考点:基本不等式
专题:不等式
分析:先将点P的坐标代入直线方程中,建立a与b的关系,再将
1
a
+
1
b
改写成(
1
a
+
1
b
)•1
,展开后利用基本不等式可达到目的.
解答: 解:将点P的坐标代入直线方程中,得a+2b-1=0,即a+2b=1.
∵P为第一象限内的点,∴a>0,b>0,
1
a
+
1
b
=(
1
a
+
1
b
)(a+2b)
=3+
2b
a
+
a
b
≥3+2
2b
a
a
b
=3+2
2

当且仅当
2b
a
=
a
b
a=
2
b
时上式取“=”号,此时,联立a+2b=1得a=
2
-1
,b=1-
2
2

故答案为:3+2
2
点评:本题考查了基本不等式的运用及常见的变形技巧,其中“1”的替换起了关键作用.利用基本不等式求最值时,应注意“一正,二定,三相等”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

中国正在成为汽车生产大国,汽车保有量大增,交通拥堵日趋严重.某市有关部门进行了调研,相关数据显示,从上午7点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间关系可近似地用如下函数给出:y=
18sin(
π
3
t-
13
6
π),7≤t≤9
4t-27,9≤t<10
-3t2+66t-347,10<t≤12
,求从上午7点到中午12点,车辆通过该路段用时最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积为(  )
A、
3
B、
3
C、
4
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求函数f(x)=ex-4x+1在区间(1,2)内零点的近似值的过程中得到f(15)<0,f(1.75)<0,f(1.875)>0,f(2)>0则函数零点落在区间(  )
A、(1.5,1.75)
B、(1.75,1.875)
C、(1.875,2)
D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥的三视图如图所示,则它的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).
(1)求f(1)的值,判断f(x)的奇偶性并证明;
(2)判断f(x)在(0,+∞)上的单调性,并给出证明;
(3)若a≥0且f(a+1)≤
39
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与F(x)满足F(x)=f(x)+2,且f(x)在R上是奇函数.
(Ⅰ)若F(-1)=8,求F(1);
(Ⅱ)若F(x)在(0,+∞)上的最大值为5,那么在(-∞,0)上F(0)是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2-6x-3的单调增区间为(  )
A、(-∞,-3]
B、[-3,+∞)
C、(-∞,3]
D、[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式为(  )
A、f(x)=4x2
B、f(x)=-4x2+2
C、f(x)=-2x2+4
D、f(x)=4x2或f(x)=-2x2+4

查看答案和解析>>

同步练习册答案