精英家教网 > 高中数学 > 题目详情

已知f(x)=ax2+bx+3a+b为偶函数,其定义域是[a-1,a],则其最小值为________.


分析:据偶函数中不含奇次项,偶函数的定义域关于原点对称,列出方程组,求出f(x)的解析式;求出二次函数的最小值.
解答:∵f(x)=ax2+bx+3a+b为偶函数
∴b=0,1-a=a
解得b=0,a=
所以f(x)=,定义域为[]
所以当x=0时,有最小值
故答案为
点评:解决函数的奇偶性时,一定要注意定义域关于原点对称是函数具有奇偶性的必要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤
x2+12
对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,则f(2)的取值范围是
[2,10]
[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在区间(
1
2
,1)
上不单调,则
3b-2
3a+2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(
3
2
)从小到大的顺序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步练习册答案