精英家教网 > 高中数学 > 题目详情
抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与x2=2qy相切.
精英家教网
分析:设p>0,q>0.又设y2=2px的内接三角形顶点为A1(x1,y1),A2(x2,y2),A3(x3,y3),分别代入抛物线方程,依题意,设A1A2,A2A3与抛物线x2=2qy相切,要证A3A1也与抛物线x2=2qy相切,由x2=2qy在原点O处的切线是y2=2px的对称轴,可知原点O不能是所设内接三角形的顶点推断三个顶点都不能是(0,0);故可设直线A1A2的方程,进而得A1A2方程代入抛物线方程,整理后根据判别式等于0,求得2p2q+y1y2(y1+y2)=0同理由于A2A3与抛物线x2=2qy相切,A2A3也不能与Y轴平行,即x2≠x3,y2≠-y3,同样得到2p2q+y2y3(y2+y3)=0把y2=-y1-y3代入2p2q+y1y2(y1+y2)=0整理后可说明A3A1与抛物线x2=2qy的两个交点重合,进而可判断只要A1A2,A2A3与抛物线x2=2qy相切,则A3A1也与抛物线x2=2qy相切.
解答:解:不失一般性,设p>0,q>0.又设y2=2px的内接三角形顶点为
A1(x1,y1),A2(x2,y2),A3(x3,y3
因此y12=2px1,y22=2px2,y32=2px3
其中y1≠y2,y2≠y3,y3≠y1
依题意,设A1A2,A2A3与抛物线x2=2qy相切,
要证A3A1也与抛物线x2=2qy相切
因为x2=2qy在原点O处的切线是y2=2px的对称轴,
所以原点O不能是所设内接三角形的顶点
即(x1,y1),(x2,y2),(x3,y3),
都不能是(0,0);又因A1A2与x2=2qy相切,
所以A1A2不能与Y轴平行,即x1≠x2,y1≠-y2
直线A1A2的方程是y-y1=
y2-y1
x2-x1
(x-x1)

∵y22-y12=(y2-y1)(y2+y1)=2p(x2-x1).
∴A1A2方程是y=
2p
y1+y2
x+
y1y2
y1+y2
.

A1A2与抛物线x2=2qy交点的横坐标满足
x2-
4pq
y1+y2
x-
2qy1y2
y1+y2
=0

由于A1A2与抛物线x2=2qy相切,上面二次方程的判别式
△=(-
4pq
y1+y2
)2+4(
2qy1y2
y1+y2
)
=0.
化简得2p2q+y1y2(y1+y2)=0(1)
同理由于A2A3与抛物线x2=2qy相切,A2A3也不能与Y轴平行,即
x2≠x3,y2≠-y3,同样得到2p2q+y2y3(y2+y3)=0(2)
由(1)(2)两方程及y2≠0,y1≠y3,得y1+y2+y3=0.
由上式及y2≠0,得y3≠-y1,也就是A3A1也不能与Y轴平行
今将y2=-y1-y3代入(1)式得:2p2q+y3y1(y3+y1)=0(3)
(3)式说明A3A1与抛物线x2=2qy的两个交点重合,
即A3A1与抛物线x2=2qy相切
所以只要A1A2,A2A3与抛物线x2=2qy相切,
则A3A1也与抛物线x2=2qy相切.
点评:本题主要考查抛物线的应用和直线与抛物线的关系.考查了学生综合分析问题和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px的焦点F与双曲线x2-
y2
3
=1
的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=
2
|AF|
,则△AFK的面积为(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与双曲线
x
3
2
-y2=1
的右焦点重合,则p的值为(  )
A、2
2
B、4
C、-4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•河西区一模)若抛物线y2=2px的焦点与双曲线
x2
9
-
y2
5
=1
的右焦点重合,则p的值为
2
14
2
14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线5x2-4y2=20的右焦点与抛物线y2=2px的焦点重合,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点坐标为(1,0)则准线方程为
 

查看答案和解析>>

同步练习册答案