精英家教网 > 高中数学 > 题目详情
19.已知A(2,2)、B(-5,1)、C(3,-5),则△ABC的外心的坐标为(-1,-2).

分析 设外心坐标为(x,y),则(x-2)2+(y-2)2=(x+5)2+(y-1)2=(x-3)2+(y+5)2,求出x,y,可得结论.

解答 解:设外心坐标为(x,y),则(x-2)2+(y-2)2=(x+5)2+(y-1)2=(x-3)2+(y+5)2
解得x=-1,y=-2,
∴外心坐标为(-1,-2),
故答案为(-1,-2).

点评 本题考查圆的方程,考查方程思想,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个焦点为F1、F2,点A在双曲线第一象限的图象上,若△AF1F2的面积为1,且tan∠AF1F2=$\frac{1}{2}$,tan∠AF2F1=-2,则双曲线方程为$\frac{{12{x^2}}}{5}-3{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx,-1),$\overrightarrow{n}$=(sinx,cos2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.若x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知商场销售某种茶杯购买人数n与茶杯标价x元满足关系式:n=-x+b(b为常数).把购买人数为零时的最低标价称为无效价格,已知无效价格为每个30元.现在这种茶杯的成本价是10/个,商场以高于成本价的相同价格(标价)出售. 问:
(1)求b的值;
(2)商场要获取最大利润,茶杯的标价应定为每件多少元?
(3)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么茶杯的标价为每个多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{49}$-$\frac{{y}^{2}}{24}$=1上一点P与双曲线的两个焦点F1、F2的连线互相垂直,则三角形PF1F2的面积为(  )
A.20B.22C.28D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E是PA的中点.
(1)求证:平面PBM⊥平面CDE;
(2)已知点M是AD的中点,点N是AC上一点,且平面PDN∥平面BEM.若BC=2AB=4,求点N到平面CDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2+2x-3<0},B={x|log3x<1},则A∩B=(  )
A.(0,1)B.(0,3)C.{-3,3}D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a、b为直线,a、β、γ为平面,下列两个命题
(1)a⊥γ、b⊥γ、则a∥b
(2)a⊥b、a⊥α、则b∥α
其中有一个命题是正确的,正确的命题序号是(1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an},{bn}满足bn=an+1-an(n=1,2,3,…).
(1)若bn=10-n,求a16-a5的值;
(2)若${b_n}={(-1)^n}({2^n}+{2^{33-n}})$且a1=1,则数列{a2n+1}中第几项最小?请说明理由;
(3)若cn=an+2an+1(n=1,2,3,…),求证:“数列{an}为等差数列”的充分必要条件是“数列{cn}为等差数列且bn≤bn+1(n=1,2,3,…)”.

查看答案和解析>>

同步练习册答案