精英家教网 > 高中数学 > 题目详情

如图所示在直角梯形OABC中∠COA=∠OAB=,OA=OS=AB=1,OC=2点M是棱SB的中点,N是OC上的点,且ON∶NC=1∶3.

(1)求异面直线MM与BC所成的角;

(2)求MN与面SAB所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)如图所示,直角梯形ABCD中,∠A=∠D=90°,AD=2,AB=3,CD=4,P在线段AB上,BP=1,O在CD上,且OP∥AD,将图甲沿OP折叠使得平面OCBP⊥底面ADOP,得到一个多面体(如图乙),M、N分别是AC、OP的中点.
(1)求证:MN⊥平面ACD;
(2)求平面ABC与底面OPAD所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南京十三中高考数学模拟试卷(解析版) 题型:解答题

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2008年江苏省苏州五中高三调研数学试卷(解析版) 题型:解答题

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学附加题部分专项训练1(理科)(解析版) 题型:解答题

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

同步练习册答案