精英家教网 > 高中数学 > 题目详情

已知曲线C的极坐标方程为数学公式
(1)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;
(2)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.

解:(1)曲线C的极坐标方程为
;(4分)
(2)设P(3cosθ,2sinθ),
则3x+4y=(6分)
当sin(θ+φ)=1时,3x+4y的最大值为(10分)
分析:(1)利用ρsinθ=y,ρcosθ=x化简曲线C的极坐标方程,即可得到直角坐标方程.
(2)P(x,y)是曲线C上的一个动点,利用椭圆的参数方程,设P(3cosθ,2sinθ),化简3x+4y的表达式,然后求其最大值.
点评:本题是中档题,考查极坐标方程与直角坐标方程的互化,注意利用ρsinθ=y,ρcosθ=x的互化方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线
x=-1+t
y=2t
(t为参数)的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:极坐标与参数方程)
在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)化曲线C的极坐标方程为直角坐标方程;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程
为ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
(t为参数),直线l与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=2sinθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程为
x=2-
3
5
t
y=
4
5
t
,(为参数),
(1)将曲线C 的极坐标方程转化为直角坐标方程.
(2)直线与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)(坐标系与参数方程选做题)
已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线
x=t-1
y=
3
t
(t为参数)距离的最小值为
3
-1
3
-1

查看答案和解析>>

同步练习册答案