精英家教网 > 高中数学 > 题目详情

椭圆E:数学公式+y2=1(a>1)与双曲线H:数学公式-y2=1(m>0)有相同的焦点F1,F2,E与H在第一象限的交点为P,则△PF1F2的面积为


  1. A.
    数学公式
  2. B.
    1
  3. C.
    数学公式
  4. D.
    2
B
分析:利用椭圆、双曲线的定义,求出|PF1|=m+a,|PF2|=a-m,结合椭圆E:+y2=1(a>1)与双曲线H:-y2=1(m>0)有相同的焦点,可求得∠F1PF2=90°,从而可得△PF1F2的面积.
解答:由题意,|PF1|-|PF2|=2m,|PF1|+|PF2|=2a
∴|PF1|=m+a,|PF2|=a-m
∵椭圆E:+y2=1(a>1)与双曲线H:-y2=1(m>0)有相同的焦点
∴a2-1=m2+1
∴a2-m2=2
∴cos∠F1PF2====0
∴∠F1PF2=90°
∴△PF1F2的面积为|PF1||PF2|=(a2-m2)=1
故选B.
点评:本题考查椭圆、双曲线的定义,考查余弦定理的运用,考查三角形面积的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄冈模拟)在矩形ABCD中,|AB|=2
3
,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且
|OR|
|OF|
=
|CR′|
|OF|
=
1
n

(Ⅰ)求证:直线ER与GR′的交点P在椭圆Ω:
x2
3
+y2=1上;
(Ⅱ)若M、N为椭圆Ω上的两点,且直线GM与直线GN的斜率之积为
2
3
,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)(在下列两题中,任选一题,写出计算过程,并求出结果,若同时选做两题,
则只批阅第②小题,第①题的解答,不管正确与否,一律视为无效,不予批阅):
①将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并
将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解;
②(解答本题,最多得9分)将(1)中的曲线C推广为椭圆:
x2
a2
+
y2
b2
=1
,并
将(2)中的定点取为原点,求与(2)相类似的问题的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州市沙市中学高二(上)期中数学试卷(理科)(解析版) 题型:选择题

椭圆E:+y2=1(a>1)与双曲线H:-y2=1(m>0)有相同的焦点F1,F2,E与H在第一象限的交点为P,则△PF1F2的面积为( )
A.
B.1
C.
D.2

查看答案和解析>>

同步练习册答案