A.仅有极小值
B.仅有极大值![]()
C.有极小值0,极大值
D.以上皆不正确
科目:高中数学 来源: 题型:
| ln|x| |
| |x| |
| 1 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| f1(x)+f2(x) |
| 2 |
| |f1(x)-f2(x)| |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)讨论函数f(x)在R上的单调性;
(2)当-1<a<0时,求f(x)在[-2,1]上的最小值.
(文)已知f(x)=x3+
mx2-2m2x-4(m为常数,且m>0)有极大值
.
(1)求m的值;
(2)求曲线y=f(x)的斜率为2的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求函数f(x)的单调区间和最小值;
(2)当b>0时,求证:bb≥
(其中e=2.718 28…是自然对数的底数);
(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).
(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(1)求
和c的值.
(2)求函数f(x)的单调递减区间(用字母a表示).
(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com