精英家教网 > 高中数学 > 题目详情
对于任意的t∈[1,2],函数f(x)=x3+(2+
m
2
)x2-2x
在区间(t,3)上总存在极值,求m的范围(  )
A.-
37
3
<m<-5
B.-
37
3
<m<-9
C.-9<m<-5D.-9<m<0
由函数f(x)=x3+(2+
m
2
)x2-2x
,得:f(x)=3x2+(4+m)x-2.
要使对于任意的t∈[1,2],函数f(x)=x3+(2+
m
2
)x2-2x
在区间(t,3)上总存在极值,
说明导函数f(x)的值在(t,3)上有正有负,
因为二次函数f(x)=3x2+(4+m)x-2的图象开口向上,且横过定点(0,-2),
所以,只需
f(t)<0
f(3)>0
,即
3t2+(4+m)t-2<0①
27+3(4+m)-2>0②

由①得:m<-3t+
2
t
-4
(1≤t≤2).而(-3t+
2
t
-4)min=-3×2+
2
2
-4=-9

所以,m<-9.
由②得:m>-
37
3

所以,使得对于任意的t∈[1,2],函数f(x)=x3+(2+
m
2
)x2-2x
在区间(t,3)上总存在极值的m的范围是-
37
3
<m<-9

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(I)当a=1时,求函数f(x)的单调区间;
(II)若函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f(x)]在区间(t,3)上总存在极值?
(III)当a=2时,设函数h(x)=(p-2)x+
p+2
x
-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
]
在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
(n≥2,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R)
(1)求f(x)的单调区间;
(2)若函数f(x)的图象在点(2,f)处切线的倾斜角为45°,且对于任意的t∈[1,2],函数g(x)=x3+x2(f(x)+
m2
)
在区间(t,3)上总不为单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间并比较f(x)与f(1)的大小关系;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
]在区间(t,3)上总不是单调函数,求m的取值范围;
(3)若n≥2,n∈N+,试猜想
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=-2时,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m2
+f′(x)
]在区间(t,3)上总存在极值?

查看答案和解析>>

同步练习册答案