分析 (1)利用数列递推关系、等比数列的定义及其通项公式即可得出.
(2)由an+1=2Sn+1(n≥1),可得:Sn=$\frac{{a}_{n+1}-1}{2}$.
解答 解:(1)由an+1=2Sn+1可得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2an,an+1=3an(n≥2),
又a2=2S1+1=3,∴a2=3a1,
∴{an}是首项为1,公比为3得等比数列,
∴an=3n-1.
(2)由an+1=2Sn+1(n≥1),
可得:Sn=$\frac{{a}_{n+1}-1}{2}$=$\frac{{3}^{n}-1}{2}$.
点评 本题考查了数列递推关系、等比数列的定义及其通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1506 | B. | 1508 | C. | 1510 | D. | 1512 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com