16£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£®
£¨¢ñ£©½«Ö±ÏßlÓëÔ²OµÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¤Ã÷Ö±Ïßl¹ý¶¨µãP£¨$\frac{1}{2}$£¬1£©£»
£¨¢ò£©ÉèÖ±ÏßlÓëÔ²OÏཻÓÚA¡¢BÁ½µã£¬ÇóÖ¤£ºµãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ýΪ¶¨Öµ£®

·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£¬¼´¿ÉÖ¤Ã÷¾­¹ý¶¨µã£»Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ª¿ÉµÃ£º${¦Ñ}^{2}=\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼°Æä¦Ñ2=x2+y2¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{2}{\sqrt{6}}t}\\{y=1+\frac{\sqrt{2}}{\sqrt{6}}t}\end{array}\right.$´úÈë¡ÑOµÄ·½³Ì£ºx2+y2=x+y£¬»¯Îª£º${t}^{2}+\frac{\sqrt{3}}{3}$t-$\frac{1}{4}$=0£¬¿ÉµÃt1t2=-$\frac{1}{4}$£®ÀûÓÃ|PA||PB|=|t1t2|¼´¿ÉµÃ³ö£®

½â´ð £¨I£©½â£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£º$x-\frac{1}{2}$=$\sqrt{2}$£¨y-1£©£¬¿ÉÖªÖ±Ïßl¹ý¶¨µãP£¨$\frac{1}{2}$£¬1£©£¬»¯ÎªÒ»°ãʽ£º$2x-2\sqrt{2}y$+2$\sqrt{2}$-1=0£»
Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ª¿ÉµÃ£º${¦Ñ}^{2}=\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬»¯Îª£ºx2+y2=x+y£®
£¨II£©Ö¤Ã÷£º°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{2}{\sqrt{6}}t}\\{y=1+\frac{\sqrt{2}}{\sqrt{6}}t}\end{array}\right.$´úÈë¡ÑOµÄ·½³Ì£ºx2+y2=x+y£¬»¯Îª£º${t}^{2}+\frac{\sqrt{3}}{3}$t-$\frac{1}{4}$=0£¬
¡àt1t2=-$\frac{1}{4}$£®
¡à|PA||PB|=|t1t2|=$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Ô²µÄ·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®µÈ±ÈÊýÁÐ{an}ÖУ¬¹«±Èq=2£¬Ôò$\frac{{a}_{2}+{a}_{4}+{a}_{10}}{{a}_{1}+{a}_{3}+{a}_{9}}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®É躯Êýf£¨x£©=px-$\frac{p}{x}$-2lnx£®
£¨¢ñ£©Èôp=1£¬º¯Êýy=f£¨x£©ÊÇ·ñÓм«Öµ£¬ÈôÓУ¬ÇëÇó³ö¼«Öµ£¬ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ò£©Èôf£¨x£©ÔÚÆä¶¨ÒåÓòÄÚΪµ¥µ÷º¯Êý£¬ÇóʵÊýpµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®cos¦Á=$\frac{2}{3}$£¬¦ÁÊǵÚËÄÏóÏ޽ǣ¬Ôòsin¦Á=-$\frac{\sqrt{5}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚʵÊý·¶Î§ÄÚ·Ö½âÒòʽx2-6x+8=£¨x-2£©£¨x-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬F1¡¢F2·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬MΪÍÖÔ²µÄ϶¥µã£¬Ö±ÏßMF1½»ÍÖÔ²ÓëÁíÒ»µãN£®
£¨1£©Èô¡÷MF2NµÄÖܳ¤Îª16£¬${S}_{{{¡÷MF}_{1}F}_{2}}$£º${S}_{{¡÷{NF}_{1}F}_{2}}$=3£º1£¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýµã£¨3£¬0£©ÇÒ²»´¹Ö±ÓÚ×ø±êÖáµÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÒÑÖªµãC£¨t£¬0£©£¬µ±t¡Ê£¨0£¬1£©Ê±£¬ÇóÂú×ã|AC|=|BC|µÄÖ±ÏßABµÄбÂÊkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÈýÀâ×¶V-ABCµÄµ×ÃæABCÊDZ߳¤Îª4µÄÕýÈý½ÇÐΣ¬²àÀⳤ¶¼ÏàµÈ£¬ÆäÍâ½ÓÇò£¨ÈýÀâ×¶µÄÿ¸ö¶¥µã¶¼ÔÚÇòÃæÉÏ£©µÄÇòÐÄΪO£¬Âú×ã$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{VO}$£¬ÔòÇòOµÄÌå»ýΪ8$\sqrt{6}$¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÓÉÖ±Ïßx+y+2=0£¬x+2y+1=0£¬2x+y+1=0Χ³ÉµÄÈý½ÇÐÎÇøÓò£¨°üÀ¨±ß½ç£©Óò»µÈʽ£¨×飩¿É±íʾΪ$\left\{\begin{array}{l}{x+y+2¡Ý0}\\{x+2y+1¡Ü0}\\{2x+y+1¡Ü0}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¹ØÓÚxµÄ²»µÈʽ£¨1+a£©x£¾1µÄ½â¼¯Îª{x|x£¼$\frac{1}{1+a}$}£¬ÊÔÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸