精英家教网 > 高中数学 > 题目详情

如图所示,四边形ABCD和ABEF都是正方形,点M是DF的中点.
(I)求证:AM⊥平面CDFE;
(II)求证:DF∥平面BCE.

证明:( I)∵四边形ABCD和ABEF都是正方形,
∴AB⊥AF,AB⊥AD,
又AF∩AD=A,
∴AB⊥平面ADF.
∵AB∥EF,
∴EF⊥平面ADF.
∵AM?平面ADF,
∴AM⊥EF.
∵AD=AF,在△ADF中,M是DF的中点,
∴AM⊥DF.
又∵DF∩EF=F,
∴AM⊥平面CDFE.
(II)由四边形ABCD和ABEF都是正方形,
∴AB∥EF,AB=EF,AB∥CD,AB=CD,
∴EF∥CD,EF=CD.
∴四边形CDFE为平行四边形,
∴DF∥CE.
又∵DF?平面BCE,CE?平面BCE,
∴DF∥平面BCE.
分析:(I)由已知中四边形ABCD和ABEF都是正方形,易得AB⊥AF,AB⊥AD,由线面垂直的判定定理可得AB⊥平面ADF,则EF⊥平面ADF也成立,结合线面垂直的性质,可得AM⊥EF,再由点M是DF的中点,结合等腰三角形“三线合一”的性质,可得AM⊥DF,结合线面垂直的判定定理即可得到AM⊥平面CDFE;
(II)由四边形ABCD和ABEF都是正方形,易证明四边形CDFE为平行四边形,则DF∥CE,由线面平行的判定定理,即可得到DF∥平面BCE
点评:本题考查的知识点是,线面垂直的判定及性质,线面平行的判定,熟练掌握空间中直线与平面垂直及平行的判定定理、性质定理、定义及几何特征是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE;
(2)求证:AE⊥BE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,∠ACB=120°,AB⊥PC.
①求证:平面PAC⊥平面ABC;
②求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=3MB,线段CE上是否存在一点N,使得MN∥平面DAE?若存在,求出CN的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,以AB=4cm,BC=3cm的长方形ABCD为底面的长方体被平面斜着截断的几何体,EFGH是它的截面.当AE=5cm,BF=8cm,CG=12cm时,试回答下列问题:
(1)求DH的长;
(2)求这个几何体的体积;
(3)截面四边形EFGH是什么图形?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四边形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB,PC的中点,
(1)求直线MN和AD所成角;
(2)求证:MN⊥平面PCD.

查看答案和解析>>

同步练习册答案