精英家教网 > 高中数学 > 题目详情
已知平面四边形的对角线交于点,且.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离
解:(Ⅰ)证明:因为平面四边形的对角线交于点,那么沿着AC折叠前后,垂直关系不变,因此
(II)分别以OD,OA,OB为z,x,y轴建立空间直角坐标系,然后表示出点的坐标,求解法向量来求解二面角和点到面的距离。因为
解得二面角大小的余弦值为
且有,而点到平面的距离为
本试题主要考查了空间中点、线、面的位置关系的综合运用。以及线线垂直和二面角的求解的立体几何试题运用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

  在直三棱柱中,="2" ,.点分别是 ,的中点,是棱上的动点.
(I)求证:平面
(II)若//平面,试确定点的位置,
并给出证明;
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面,直线满足:,那么
;     ②;    ③;     ④
可由上述条件可推出的结论有      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b是两条异面直线,直线ca,那么c与b的位置关系是(  )
A.一定是异面B.一定是相交C.不可能平行D.可能相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面,底面为直角梯形,
(Ⅰ)求异面直线所成角的大小;
(Ⅱ)求直线与平面所成角的正切值;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AA1,BB1,CC1不共面,BB1//AA1且BB1=AA1, CC1 //AA1且CC1=AA1. 求证:ABCA1B1C1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,多面体FE-ABCD中,ABCD和ACFE都是直角梯形,DC∥AB,AE∥CF,平面ACFE⊥平面ABCD,AD=DC=CF=2AE=,∠ACF=∠ADC=
(I)求证:BC⊥平面ACFE;
(II)求二面角B-FE-D的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是矩形,平面,四边形是梯形,点的中点,.
(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,梯形ABCD中,CD∥AB,AD=DC=CB=AB=a,E是AB的中点,将ΔADE沿DE折起,使点A折到点P的位置,且二面角P-DE-C的大小为120°.

(1)求证:DE⊥PC;
(2)求直线PD与平面BCDE所成角正弦值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

同步练习册答案