精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow{b}$=(cosα,-sinα),α∈($\frac{π}{2}$,π),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.π-αB.αC.$\frac{π}{2}$-αD.$\frac{3π}{2}$-α

分析 由已知求出两个向量的数量积,利用数量积公式得到夹角的余弦值,进一步求夹角.

解答 解:由已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow{b}$=(cosα,-sinα),α∈($\frac{π}{2}$,π),则|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=-2cosα,
所以向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{-2cosα}{2}$=-cosα=cos(π-α),α∈($\frac{π}{2}$,π),π-α∈(0,$\frac{π}{2}$);
故选A.

点评 本题考查了平面向量的数量积公式的运用以及三角函数的诱导公式的运用;注意向量夹角的范围是[0,π].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.(A)设函数f(x)=xcosx-sinx,x∈(0,π),则f(x)的单调性是(  )
A.增函数B.减函数C.先增后减函数D.先减后增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)={cos^2}\;\frac{x}{2}-{sin^2}\;\frac{x}{2}\;+sin\;x$,若${x_0}\;∈({0\;,\;\frac{π}{4}})$且$f({x_0})=\frac{{4\sqrt{2}}}{5}$,则cos2x0=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.先后抛掷两枚均匀的骰子,骰子点数分别记为x,y,则log2xy>1的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{36}$C.$\frac{7}{36}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=logx(x-$\frac{1}{2}$)的定义域{x|$x>\frac{1}{2}$且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量.
(1)求证:|$\overrightarrow{a}•\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|;
(2)应用(1)的结论求函数y=$\frac{1+sinx}{2-cosx}$的最大值.(注:第2小题未用向量法不给分,要用到向量数量积相关概念)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.
(1)求(a,b)的值;
(2)分别求出甲、乙两组数据的方差S2和S2,并由此分析两组技工的加工水平
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],$\overline{x}$为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0),f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)上有最小值,无最大值,则ω=$\frac{14}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若f(x)的定义域为(-2,2),则f(2x-3)的定义域是($\frac{1}{2}$,$\frac{5}{2}$).

查看答案和解析>>

同步练习册答案