精英家教网 > 高中数学 > 题目详情
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(1)求数列{an}的通项公式an
(2)令,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整数n。
解:(1)设{an}的公比为q,由已知,得

;       
(2)
,…………①  
, ………②
①-②得



∴满足不等式的最小的正整数n为5。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a4=20,a3=8;
(1)求数列{an}的通项公式;
(2)若bn=anlog
12
an
,数列{bn}的前n项和为Sn,求Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an•log 
12
an,Sn=b1+b2+…+bn,求使Sn+n•2Pn+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列an满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项,则数列an的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlog 
12
an,Sn=b1+b2+b3+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项
①求数列{an}的通项公式;
②设bn=anlog2an,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案