精英家教网 > 高中数学 > 题目详情

 中央电视台“正大综艺”节目的现场观众来自四个单位,分别在图中4个区域内坐定.有4种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否则不受限制,那么不同的着装方法有多少种?

解法一:若每个区域服装颜色不相同,则有C14·C13·C12·1=24种;若Ⅰ、Ⅲ或Ⅱ、Ⅳ同色,另两区域不同色,则有2C14×3×2=48种;若Ⅰ、Ⅲ与Ⅱ、Ⅳ分别同色,则有C24·A22=12种.故共有24+48+12=84种.

解法二:Ⅰ有4种可能,Ⅱ有3种可能,Ⅲ可与Ⅰ相同或不同,故共有4×3×3+4×3×2×2=84种方法.


练习册系列答案
相关习题

科目:高中数学 来源:2013届湖南省高二上学期第一次阶段性考试理科数学试卷 题型:填空题

中央电视台“正大综艺”节目的现场观众来自4个单位,分别在图中4个区域内坐定。有4种不同的颜色的服装,每个区域的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否不受限制,那么不同的着色方法共有____________种。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

8.中央电视台“正大综艺”节目的现场观众来自四个单位,分别在图中4个区域内坐定,有4种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两个区域的颜色不

查看答案和解析>>

同步练习册答案