已知各项不为0的等差数列{an},满足2a3-a12=0,a1=d,数列{bn}是等比数列,且b13=a2,b1=a1则b6b8( )
A.72
B.4
C.8
D.16
【答案】分析:由2a3-a12=0,a1=d,可得2(a1+2d)-a12=0,由此求得 a1=d=6,an =6n.再由b13=a2,b1=a1,可得 b6b8 =b1•b13=a1•a2 ,运算求得结果.
解答:解:∵各项不为0的等差数列{an},满足2a3-a12=0,a1=d,∴2(a1+2d)-a12=0,
即 2(3a1))-a12=0,∴a1=d=6,an =6n.
又∵数列{bn}是等比数列,且b13=a2=12,b1=a1 =6,
∴b6b8 =b1•b13=a1•a2=6×12=72,
故选A.
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,以及等比数列的定义和性质的应用,属于中档题.